NYU Langone Medical Center

Downloads

For a list of our papers on Goole Scholar, please click this link

  • 2016  Wankel, B., J. Ouyang, X. Guo, K. Hadjiolova, J. Miller, Y. Liao, D. K. Tham, R. Romih, L. R. Andrade, I. Gumper, J. P. Simon, R. Sachdeva, T. Tolmachova, M. C. Seabra, M. Fukuda, N. Schaeren-Wiemers, W. J. Hong, D. D. Sabatini, X. R. Wu, X. Kong, G. Kreibich, M. J. Rindler and T. T. Sun (2016). "Sequential and compartmentalized action of Rabs, SNAREs, and MAL in the apical delivery of fusiform vesicles in urothelial umbrella cells." Mol Biol Cell 27(10): 1621-1634 (pdf)
  • 2016  Schaffer, J. N., A. N. Norsworthy, T. T. Sun and M. M. Pearson (2016). "Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation." Proc Natl Acad Sci U S A 113(16): 4494-4499 (pdf)
  • 2015  Liu, Y., S. Memet, R. Saban, X. Kong, P. Aprikian, E. Sokurenko, T. T. Sun and X. R. Wu (2015). "Dual ligand/receptor interactions activate urothelial defenses against uropathogenic E. coli." Sci Rep 5: 16234 (pdf)
  • 2014  Desalle, R., J. U. Chicote, T. T. Sun and A. Garcia-Espana (2014). "Generation of divergent uroplakin tetraspanins and their partners during vertebrate evolution: identification of novel uroplakins." BMC Evol Biol 14(1): 13 (pdf)
  • 2014   Vieira, N., Deng, F.M., et al. SNX31: a novel sorting nexin associated with the uroplakin-degrading multivesicular bodies in terminally differentiated urothelial cells. PLoS One 9, e99644 (pdf)
  • 2012   Zocher et al. Uroplakins do not restrict CO2 transport through the urothelium, The Journal of Biological Chemistry. 287:11011 (pdf)
  • 2012   Zhou et al. MAL facilitates the incorporation of exocytic uroplakin-delivering vesicles into the apical membrane of urothelial umbrella cells, Mol Biol Cell. 23:1354 (pdf)
  • 2010   Sun et al. Location of Corneal Epithelial Stem Cells, Nature. 463: E10 (pdf)
  • 2009   Guo et al. Involvement of vps33a in the Fusion of Uroplakin-degrading Multivesicular Bodies with Lysosomes, Traffic. 10: 1350 (pdf)
  • 2009   Thumbikat et al. Bacteria-induced Uroplakin Signaling Mediates Bladder Response to Infection, PLoS pathogen. 5: e1000415 (pdf)
  • 2009   Carcia-Espana et al. Intron Evolution: Testing Hypotheses of Intron Evolution Using the Phylogenomics of Tetraspanins, PLoS ONE. 4: e4680 (pdf)
  • 2009   Aboushwareb et al. Alterations in Bladder Function Associated With Urothelial Defects in Uroplakin II and IIIa Knockout Mice, Neurourology & urodynamics. 28: 1028 (pdf)
  • 2009   Wu et al. Uroplakins in Urothelial Biology, Function, and Disease, Kidney International. 75: 1153 (pdf)
  • 2009   He et al. Deficiency of pRb Family Proteins and p53 in Invasive Urothelial Tumorigenesis, Cancer Research. 69: 9413 (pdf)
  • 2008   Hodges et al. Voiding Pattern Analysis as a Surrogate for Cystometric Evaluation in Uroplakin II Knockout Mice, Journal of Urology. 179: 2046 (pdf)
  • 2008   Garcia-Espana et al. Appearance of New Tetraspanin Genes During Vertebrate Evolution, Genomics. 91: 326 (pdf)
  • 2008   Hu et al. Assembly of a Membrane Receptor Complex: Roles of the Uroplakin II Prosequence in Regulating Uroplakin Bacterial Receptor Oligomerization, Biochemical Journal. 414: 195 (pdf)
  • 2007   Luque-Garcia et al. Analysis of Electroblotted Proteins by Mass Spectrometry: Protein Identification After Western Blotting. Molecular & cellular proteomics. 7: 308 (pdf)
  • 2007   Mo et al. Hyperactivation of Ha-ras Oncogene, but not Ink4a/Arf Deficiency, Triggers Bladder Tumorigenesis". Journal of Clinical Investigation. 117: 314 (pdf)
  • 2007   Kabosova et al. Compositional Differences Between Infant and Adult Human Corneal Basement Membranes". Investigative ophthalmology & visual science. IOVS. 48: 4989 (pdf)
  • 2007   Brenner-Anantharam et al. Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling". Development. 134: 1967 (pdf)
  • 2006   Garcia-Espana et al. Origin of the tetraspanin uroplakins and their co-evolution with associated proteins: Implications for uroplakin structure and function. Molecular phylogenetics & evolution. 41: 355 (pdf)
  • 2006   Tu et al. Integrity of all four transmembrane domains of the tetraspanin uroplakin Ib is required for its exit from the ER. Journal of cell science. 119: 5077 (pdf)
  • 2006   Min et al. Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. Journal of cell biology. 173: 975 (pdf)
  • 2006   Bo et al. Distinct glycan structures of uroplakins Ia and Ib: structural basis for the selective binding of FimH adhesin to uroplakin Ia. Journal of biological chemistry. 281: 14644 (pdf)
  • 2006   Osman et al. Novel blood biomarkers of human urinary bladder cancer. Clinical cancer research. 12: 3374 (pdf)
  • 2006   Sun, TT. Altered phenotype of cultured urothelial and other stratified epithelial cells: implications for wound healing. American journal of physiology. Renal physiology. 291: F9 (pdf)
  • 2006   Luque-Garcia et al. Use of nitrocellulose membranes for protein characterization by matrix-assisted laser desorption/ionization mass spectrometry. Analytical chemistry. 78: 5102 (pdf)
  • 2005   Garcia-Espana et al. Differential expression of cell cycle regulators in phenotypic variants of transgenically induced bladder tumors: implications for tumor behavior. Cancer research. 65: 1150 (pdf)
  • 2005   Sanner et al. Visualizing nature at work from the nano to the macro scale. NanoBiotechnology. 01:7 (pdf)
  • 2005   Hu et al. Assembly of Urothelial Plaques: Tetraspanin Function in Membrane Protein Trafficking. Molecular biology of the cell. 16: 3937 (pdf)
  • 2005   Liang et al. Cellular basis of urothelial squamous metaplasia: roles of lineage heterogeneity and cell replacement. Journal of cell biology. 171: 83 (pdf)
  • 2005   Riedal et al. Urothelial umbrella cells of human ureter are heterogeneous with respect to their uroplakin composition: different degrees of urothelial maturity in ureter and bladder?. European journal of cell biology. 84: 393 (pdf)
  • 2005   Miller et al. Interpreting epithelial cancer biology in the context of stem cells: tumor properties and therapeutic implications. Biochimica & biophysica acta. 2005; 1756: 25 (pdf)
  • 2005   Mo et al. Gene Deletion in Urothelium by Specific Expression of Cre Recombinase. American journal of physiology. Renal physiology. 289: F562 (pdf)
  • 2004   Sun. Excessive trust in authorities and its influence on experimental design. Nature reviews. Molecular cell biology. 5: 577 (pdf)
  • 2004   Jiang et al. Lack of major involvement of human uroplakin genes in vesicoureteral reflux: Implications for disease heterogeneity. Kidney international. 66: 10 (pdf)
  • 2004   Sun et al. Sun, Tung-Tien; Lavker, Robert M. "Corneal epithelial stem cells: past, present, and future. Journal of investigative dermatology symposium proceedings. 9: 202 (pdf)
  • 2004   Kong et al. Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. Journal of cell biology. 167: 1195 (pdf)
  • 2004   Osman et al. Detection of circulating cancer cells expressing uroplakins and epidermal growth factor receptor in bladder cancer patients. International journal of cancer. 111: 934 (pdf)
  • 2004   Lavker et al. Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Experimental eye research. 78: 433 (pdf)
  • 2003   Chen et al. Rab27b is associated with fusiform vesicles and may be involved in targeting uroplakins to urothelial apical membranes. Proceedings of the National Academy of Sciences of the United States of America. 100: 14012 (pdf)
  • 2003   Min et al. Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. Journal of cell science. 116: 4087 (pdf)
  • 2003   Lavker and Sun. Epithelial stem cells: the eye provides a vision. Eye. 17: 937 (pdf)
  • 2003  Cheng et al. Allelic loss of p53 gene is associated with genesis and maintenance, but not invasion, of mouse carcinoma in situ of the bladder". Cancer research. 63: 179 (pdf)
  • 2002   Deng et al. Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly. Journal of cell biology. 159: 685 (pdf)
  • 2002   Tu et al. Specific heterodimer formation is a prerequisite for uroplakins to exit from the endoplasmic reticulum. Molecular biology of the cell. 13: 4221 (pdf)
  • 2002   Min et al. Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. Journal of molecular biology. 317: 697 (pdf)
  • 2002   Tsujimura et al. Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. Journal of cell biology. 157: 1257 (pdf)
  • 2002   Cheng et al. Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer research. 62: 4157 (pdf)
  • 2002   Hu et al. Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. American journal of physiology. Renal physiology. 283: F1200 (pdf)
  • 2001   Deng et al. Urothelial function reconsidered: A role in urinary protein secretion. Proceedings of the National Academy of Sciences of the United States of America. 98: 154 (pdf)
  • 2001   Zhou et al. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. Journal of cell science. 114: 4095 (pdf)
  • 2001   Liang et al. Organization of uroplakin subunits: transmembrane topology, pair formation and plaque composition". Biochemical journal. 2001; 355: 13 (pdf)
  • 2001   Hu et al. Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. Urology. 57: 117 (pdf)
  • 2000   Lavker and Sun. Epidermal stem cells: properties, markers, and location. Proceedings of the National Academy of Sciences of the United States of America. 97: 13473 (pdf)
  • 2000   Taylor et al. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 102: 451 (pdf)
  • 1999   Kacher et al. Three-dimensional analysis of the 16 nm urothelial plaque particle: luminal surface exposure, preferential head-to-head interaction, and hinge formation. Journal of molecular biology. 285: 595 (pdf)
  • 1999   Zhang et al. Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer research. 59: 3512 (pdf)
  • 1998   Kerr et al. The bladder as a bioreactor: urothelium production and secretion of growth hormone into urine. Nature biotechnology. 16: 75 (pdf)
  • 1998   Lehrer et al. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. Journal of cell science. 111: 2867 (pdf)
  • 1997   Chen et al. Regulation of K3 keratin gene transcription by Sp1 and AP-2 in differentiating rabbit corneal epithelial cells. Molecular & cellular biology. 17: 3056 (pdf)
  • 1996   Wu et al. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proceedings of the National Academy of Sciences of the United States of America. 93: 9630 (pdf)
  • 1995   Lin et al. A tissue-specific promoter that can drive a foreign gene to express in the suprabasal urothelial cells of transgenic mice. Proceedings of the National Academy of Sciences of the United States of America. 92: 679 (pdf)
  • 1995   Walz et al. Towards the molecular architecture of the asymmetric unit membrane of the mammalian urinary bladder epithelium: a closed "twisted ribbon" structure". Journal of molecular biology. 1995; 248: 887 (pdf)
  • 1995   Wu et al. Selective interactions of UPIa and UPIb, two members of the transmembrane 4 superfamily, with distinct single transmembrane-domained proteins in differentiated urothelial cells. Journal of biological chemistry. 270: 29752 (pdf)
  • 1994   Yu et al. Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. Journal of cell biology. 125: 171 (pdf)
  • 1994   Wu et al. Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins. Journal of biological chemistry. 269: 13716 (pdf)
  • 1994   Lin et al. Precursor sequence, processing, and urothelium-specific expression of a major 15-kDa protein subunit of asymmetric unit membrane. Journal of biological chemistry. 269: 1775 (pdf)
  • 1994   Wu et al. Functional importance of an Sp1- and an NFkB-related nuclear protein in a keratinocyte-specific promoter of rabbit K3 keratin gene. Journal of biological chemistry. 269: 28450 (pdf)
  • 1993   Wu and Sun. Molecular cloning of a 47 kDa tissue-specific and differentiation-dependent urothelial cell surface glycoprotein. Journal of cell science. 106: 31 (pdf)
  • 1993   Wu et al. A 300 bp 5'-upstream sequence of a differentiation-dependent rabbit K3 keratin gene can serve as a keratinocyte-specific promoter. Journal of cell science. 105: 303 (pdf)
  • 1990   Surya et al. Assessing the differentiation state of cultured bovine urothelial cells: elevated synthesis of stratification-related K5 and K6 keratins and persistent expression of uroplakin I. Journal of cell science. 97: 419 (pdf)
  • 1990   Yu et al. Uroplakin I: a 27-kD protein associated with the asymmetric unit membrane of mammalian urothelium. Journal of cell biology. 111: 1207 (pdf)
  • 1990   Wu et al. Large scale purification and immunolocalization of bovine uroplakins I, II, and III. Molecular markers of urothelial differentiation. Journal of biological chemistry. 265: 19170 (pdf)
  • 1990   Cotsarelis et al. Label-retaining cells are preferentially located in fornical epithelium: implications on conjunctival epithelial homeostasis. Investigative ophthalmology & visual science. IOVS. 36: 236 (pdf)
  • 1989   Dhouailly et al. Expression of hair-related keratins in a soft epithelium: subpopulations of human and mouse dorsal tongue keratinocytes express keratin markers for hair-, skin- and esophageal-types of differentiation. Experimental cell research. 181: 141 (pdf)
  • 1989   Cotsarelis et al. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 57: 201 (pdf)
  • 1989   Galvin et al. The major pathways of keratinocyte differentiation as defined by keratin expression: an overview. Advances in dermatology. 4: 277 (pdf)
  • 1987   O'Guin et al. Patterns of keratin expression define distinct pathways of epithelial development and differentiation. Current topics in developmental biology. 22: 97 (pdf)
  • 1986   Schermer et al. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. Journal of cell biology. 103: 49 (pdf) 
  • 1986   Ma and Sun. Differentiation-dependent changes in the solubility of a 195-kD protein in human epidermal keratinocytes. Journal of cell biology. 103: 41 (pdf)
  • 1986   Lynch et al. Acidic and basic hair/nail ("hard") keratins: their colocalization in upper cortical and cuticle cells of the human hair follicle and their relationship to "soft" keratins. Journal of cell biology. 103: 2593 (pdf)
  • 1986   Eichner et al. The role of keratin subfamilies and keratin pairs in the formation of human epidermal intermediate filaments. Journal of cell biology. 102: 1767 (pdf)
  • 1986   Cooper and Sun. Monoclonal antibody analysis of bovine epithelial keratins. Specific pairs as defined by coexpression. Journal of biological chemistry. 261: 4646 (pdf)
  • 1985   Sun et al. Monoclonal antibody studies of mammalian epithelial keratins: a review. Annals of the New York Academy of Sciences. 455: 307 (pdf)
  • 1985   Cooper et al. Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins: strategies, applications, and limitations. Laboratory investigation. 52: 243 (pdf)
  • 1984   Weiss et al. Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48- and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes. Journal of cell biology. 98: 1397 (pdf)
  • 1984   Tseng et al. Expression of specific keratin markers by rabbit corneal, conjunctival, and esophageal epithelia during vitamin A deficiency. Journal of cell biology. 99: 2279 (pdf)
  • 1984   Sun et al. Classification, expression, and possible mechanisms of evolution of mammalian epithelial keratins: A unifying model. Cancer Cells.1:169 (pdf)
  • 1984   Eichner et al. Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. Journal of cell biology. 98: 1388 (pdf)
  • 1983   Lavker and Sun. Epidermal stem cells. Journal of investigative dermatology. 81: 121s (pdf)
  • 1983   Lavker and Sun. Rapid modulation of keratinocyte differentiation by the external environment. Journal of investigative dermatology. 80: 228 (pdf)
  • 1982   Lavker and Sun. Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. Science. 215: 1239 (pdf)
  • 1982   Tseng et al. Correlation of specific keratins with different types of epithelial differentiation: monoclonal antibody studies. Cell. 30: 361 (pdf)
  • 1980   Doren et al. Intrinsic and extrinsic regulation of the differentiation of skin, corneal and esophageal epithelial cells. Cell. 22: 17 (pdf)
  • 1979   Sun et al. Keratin cytoskeletons in epithelial cells of internal organs. Proceedings of the National Academy of Sciences of the United States of America. 76: 2813 (pdf)
  • 1977   Sun and Green. Cultured epithelial cells of cornea, conjunctiva and skin: absence of marked intrinsic divergence of their differentiated states. Nature. 269: 489 (pdf)
  • 1976   Sun and Green. Differentiation of the epidermal keratinocyte in cell culture: formation of the cornified envelope. Cell. 9: 511 (pdf)