Electrophoresis

Martha L. Booz

Chemical Safety .. 334
What Is the Safest Approach to Working with Acrylamide? ... 334
What Are the Symptoms of Acrylamide Poisoning? .. 335
What Is the Medical Response to Accidental Acrylamide Exposure? 335
How Can You Dispose of Excess, Unusable Acrylamide? ... 335
What Is the Shelf Life of Acrylamide and Acrylamide Solutions? 336
Electrical Safety .. 336
What Are the Requirements for a Safe Work Area? .. 336
What Are the Requirements for Safe Equipment in Good Working Order? 337
Polyacrylamide (PAGE) Gels—Before Selecting a Gel: Getting the Best Results for Your Purpose 337
What Is the Mechanism of Acrylamide Polymerization? ... 338
What Other Crosslinkers Are Available, and When Should They Be Used? 338
How Do You Control Pore Size? 339
How Do You Calculate %T and %C? 341

I am grateful to Bruce Goodrich for the figure on degassing acrylamide, to Fiona Leung for the data regarding the molecular weight vs. relative mobility curve, and to Lee Olech and Dave Garfin for fruitful discussions about many of the questions in this chapter.
<table>
<thead>
<tr>
<th>Question</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why Should You Overlay the Gel? What Should You Use for an Overlay?</td>
<td>341</td>
</tr>
<tr>
<td>Regarding Reproducible Polymerization, What Practices Will Ensure That Your Bands Run the Same Way Every Time?</td>
<td>341</td>
</tr>
<tr>
<td>What Catalyst Concentration Should You Use?</td>
<td>343</td>
</tr>
<tr>
<td>What Is the Importance of Reagent Purity on Protein Electrophoresis and Staining?</td>
<td>343</td>
</tr>
<tr>
<td>Which Gel Should You Use? SDS-PAGE, Native PAGE or Isoelectric Focusing?</td>
<td>345</td>
</tr>
<tr>
<td>Will Your SDS Gel Accurately Indicate the Molecular Weight of Your Proteins?</td>
<td>345</td>
</tr>
<tr>
<td>Should You Use a Straight % Gel or a Gradient Gel?</td>
<td>345</td>
</tr>
<tr>
<td>What Issues Are Relevant for Isoelectric Focusing?</td>
<td>346</td>
</tr>
<tr>
<td>How Can You Resolve Proteins between Approximately 300 and 1000 kDa?</td>
<td>347</td>
</tr>
<tr>
<td>What Issues Are Critical for Successful Native PAGE?</td>
<td>348</td>
</tr>
<tr>
<td>Sample Solubility</td>
<td>348</td>
</tr>
<tr>
<td>Location of Band of Interest</td>
<td>348</td>
</tr>
<tr>
<td>How Can You Be Sure That Your Proteins Have Sufficient Negative Charge to Migrate Well into a Native PAGE Gel?</td>
<td>348</td>
</tr>
<tr>
<td>Buffer Systems for Native PAGE</td>
<td>349</td>
</tr>
<tr>
<td>What Can Go Wrong with the Performance of a Discontinuous Buffer System?</td>
<td>349</td>
</tr>
<tr>
<td>What Buffer System Should You Use for Peptide Electrophoresis?</td>
<td>350</td>
</tr>
<tr>
<td>Power Issues</td>
<td>350</td>
</tr>
<tr>
<td>Constant Current or Constant Voltage—When and Why?</td>
<td>351</td>
</tr>
<tr>
<td>Why Are Nucleic Acids Almost Always Separated via Constant Voltage?</td>
<td>352</td>
</tr>
<tr>
<td>Why Are Sequencing Gels Electrophoresed under Constant Power?</td>
<td>352</td>
</tr>
<tr>
<td>Should You Run Two Sequencing Cells off the Same Power Supply under Constant Power?</td>
<td>352</td>
</tr>
<tr>
<td>Improving Resolution and Clarity of Protein Gels</td>
<td>353</td>
</tr>
<tr>
<td>How Can You Generate Reproducible Gels with Perfect Bands Every Time?</td>
<td>353</td>
</tr>
<tr>
<td>Sample Preparation—Problems with Protein Samples</td>
<td>353</td>
</tr>
<tr>
<td>What Procedures and Strategies Should Be Used to Optimize Protein Sample Preparation?</td>
<td>353</td>
</tr>
<tr>
<td>Is the Problem Caused by Sample Preparation or by the Electrophoresis?</td>
<td>354</td>
</tr>
</tbody>
</table>
Is the Problem Caused by the Sample or the Sample Buffer? ... 354
How Do You Choose a Detergent for IEF or Native PAGE? ... 354
What Other Additives Can Be Used to Enhance Protein Solubility? ... 355
Agarose Electrophoresis ... 355
What Is Agarose? ... 355
What Is Electroendosmosis (−M, or EEO)? ... 355
Are Double-Stranded Markers Appropriate for Sizing Large Single-Stranded (Not Oligonucleotide) DNA? ... 356
What Causes Nucleic Acids to Migrate at Unexpected Migration Rates? ... 356
What Causes Commercial Preparations of Nucleic Acid Markers to Smear? ... 356
What Causes Fuzzy Bands? ... 357
Elution of Nucleic Acids and Proteins from Gels ... 357
Detection ... 357
What Should You Consider before Selecting a Stain? ... 357
Will the Choice of Stain Affect a Downstream Application? ... 359
Is Special Equipment Needed to View the Stain? ... 361
How Much Time Is Required for the Various Stains? ... 361
What If You Need to Quantify Your Stained Protein? ... 361
What Causes High Background Staining? ... 362
Will the Presence of Stain on Western-Blotted Proteins Interfere with Subsequent Hybridization or Antibody Detection Reactions? ... 363
Does Ethidium Bromide Interfere with the Common Enzymatic Manipulation of Nucleic Acids? ... 363
Standardizing Your Gels ... 363
What Factors Should Be Considered before Selecting a Molecular Weight Marker? ... 363
Are Double-Stranded Markers Appropriate for Sizing Large (Not Oligonucleotide) Single-Stranded DNA? If Not, Which Markers Are Recommended? ... 364
Can a Pre-stained Standard Be Applied to Determine the Molecular Weight of an Unknown Protein? ... 364
How Do You Determine Molecular Weight on a Western Blot? ... 365
What Are the Options for Determining pI and Molecular Weight on a 2-D Gel? ... 365
Dangerously high voltage and acrylamide, a neurotoxin and suspected carcinogen, are inescapable elements of electrophoresis. Proper personal protection and good laboratory practice will minimize the risk of harming yourself or your colleagues.

CHEMICAL SAFETY

What Is the Safest Approach to Working with Acrylamide?

Unpolymerized, monomeric acrylamide is a neurotoxin in any form. Bis-acrylamide is equally dangerous. Protect yourself by wearing gloves, a lab coat, and safety glasses, and never pipet acrylamide solutions by mouth.

Acrylamide powders should be weighed and solutions prepared in a ventilated hood. Acrylamide can be detected in the air above a beaker of acrylamide solution and throughout the laboratory. Values in the single-digit ppm range are detected above a 10% solution at room temperature (Figure 12.1). The detection method involves passing air samples through an acrylamide-binding column, and analyzing the eluant via HPLC (Dow Chemical Company, 1988). The MSDS for acrylamide gives the OSHA permissible exposure limit for acrylamide as 0.3 mg/m³ for personal exposure in an industrial setting.

The use of pre-cast gels and pre-mixed acrylamide solutions can reduce exposure to acrylamide and bis-acrylamide. Even after polymerization, a small fraction of the acrylamide remains in the neurotoxic monomeric form. Wear gloves when handling a polymerized gel.

If you need to cast your own gels, we suggest you use pre-mixed acrylamide solutions, which are also available from many vendors. The pre-mixed solutions avoid the weighing and mixing steps, and generally have a long storage life.
What Are the Symptoms of Acrylamide Poisoning?

The initial symptoms of acrylamide poisoning on the skin are peeling of the skin at the point of contact, followed by tingling and numbness in the exposed area. If exposure by any means (touch, ingestion, inhalation) continues, muscular weakness, difficulty maintaining balance, and clumsiness in walking and in the use of the hands may develop. A large, acute exposure can produce confusion, disorientation, slurred speech and ataxia (severe loss of balance). Muscular weakness and numbness in the extremities may also follow. Anyone exposed to any form of acrylamide should be immediately examined by a medical doctor (Bio-Rad Laboratories, MSDS, 2000).

What Is the Medical Response to Accidental Acrylamide Exposure?

On your skin: Wash the affected skin several times with soap for at least 15 minutes under running water.
In your mouth: Rinse your mouth immediately with water and seek medical attention immediately.
Swallowed or inhaled: If swallowed, do not induce vomiting. Seek medical attention immediately. If breathed in, get to fresh air, and seek medical attention immediately (Bio-Rad Laboratories, MSDS, 2000).

How Can You Dispose of Excess, Unusable Acrylamide?

Check with your institutional or local county environmental regulators for the disposal requirements in your area. The safest
way to dispose of a small amount of liquid acrylamide is to polymerize it in the hood in a closed plastic bag set into a beaker surrounded by a very large, tightly fastened plastic bag, to prevent spattering as the acrylamide polymerizes.

If you have more than 100 ml to dispose of, contact your local environmental safety officers to determine your recommended procedure. Acrylamide solutions emit significant heat during polymerization, and polymerization of large volumes of acrylamide can be explosive due to rapid heat buildup (Dow Chemical Company, 1988; Cytec Industries, 1995; Bio-Rad Laboratories, 2000).

Acrylamide and bis-acrylamide powders must be disposed of as solid hazardous waste. Consult your local environmental safety office.

What Is the Shelf Life of Acrylamide and Acrylamide Solutions?

Commercially prepared acrylamide solutions are stable for as long as one year, unopened, and for six months after opening. The high purity of the solution components and careful monitoring throughout the manufacturing process provides extended shelf life. The lifetime of homemade solutions similarly depends on the purity of the acrylamide and bis-acrylamide, the cleanliness of the laboratory dishes, and the purity of the water used to make the solutions.

Solid acrylamide breaks down with time due to oxidation and UV light, producing acrylic acid and ammonia. Acrylic acid in a gel can cause fuzzy bands, or fuzzy spots in the case of 2-D gels, streaking and smearing, and poor resolution (Allen and Budowle, 1994). Acrylamide decomposition occurs more quickly in solution, and it can be accelerated by any impurities within the water (Allen and Budowle, 1994). Thus acrylamide powder should be stored airtight at room temperature, and acrylamide solutions should be stored at 4°C, both in the dark.

Production facilities must establish standards and measures to determine the effective lifetime of unpolymerized acrylamide solutions.

ELECTRICAL SAFETY

What Are the Requirements for a Safe Work Area?

The voltages used in electrophoresis can be dangerous, and fires have occurred due to problems with electrophoresis cells. The
following precautions should be observed to prevent accidents and fires.

- There should be no puddles of liquid on the horizontal surfaces of the electrophoresis cell.
- The area around the power supply and cell should be dry.
- The area for at least 6 inches around the power supply and cell should be bare of clutter and other equipment. Clear space means any fire or accident can be more easily controlled.

What Are the Requirements for Safe Equipment in Good Working Order?

The wires connecting the cell to the power supply must be in good condition, not worn or cracked, and the banana plugs and jacks must be in good condition, not corroded or worn. Broken or worn wires can cause rapid changes in resistance, slow electrophoresis or a halt in the run. All cables and connectors must be inspected regularly for breaks and wear.

The banana plugs on the ends of the wires should be removed from the power supply at the end of the run by pulling them straight out. Grasp the plug, not the wire. If pulled at an angle, the solder joint attaching the banana plugs to the wires can loosen and cause the loss of the electrical circuit. On the cell core, electrode banana posts with flattened baskets do not make good contact with the banana jack in the cell lid, and should be replaced. The banana jacks (female part) in the cell lid should be inspected regularly to make sure there is no corrosion.

Before starting an electrophoresis run, dry any liquid on the horizontal surfaces of the cell, especially near the banana plugs and jacks. Any liquid on the horizontal surfaces of the cell can arc during the run, damaging the cell and stopping the electrophoresis.

Polyacrylamide (Page) Gels—Before Selecting a Gel: Getting the Best Results for Your Purpose

Before choosing which gel to use, it is important to consider several questions, all of which can help you choose the gel that will give you the best results for your purpose. The next paragraphs provide information on how to select a gel percentage or pore size, when to use SDS-PAGE and when native PAGE, what buffer system to use, which crosslinker to use, and degree of resolution needed.
What Is the Mechanism of Acrylamide Polymerization?

Most protocols use acrylamide and the crosslinker bis-acrylamide (bis) for the gel matrix. TEMED (N,N,N',N'-tetramethylethylenediamine) and ammonium persulfate are used to catalyze the polymerization of the acrylamide and bis. TEMED, a base, interacts with ammonium persulfate at neutral to basic pH to produce free radicals. The free radical form of ammonium persulfate initiates the polymerization reaction via the addition of a vinyl group (Figure 12.2). At an acidic pH, other catalysts must be used, as described in Andrews (1986), Hames and Rickwood (1981), and Caglio and Righetti (1993).

What Other Crosslinkers Are Available, and When Should They Be Used?

Bis-acrylamide is the only crosslinker in common use today. There are others available, for specialty applications. DHEBA (N,N'-dihydroxyethylene-bis-acrylamide) and DATD (N,N'-diallyltartardiamide) were both used historically with tube gels and radioactive samples (before slab gels came into common use). The tube gels were cut into thin discs, the disks were dissolved with periodic acid, and the radioactivity in the disks was counted in a scintillation counter. Of course the periodic acid destroyed some amino acids, so these crosslinkers are not useful for Edman sequencing or mass spectrometry.

Another crosslinker, BAC (bis-acrylylcystamine) can be dissolved by beta-mercaptoethanol. It is useful for nucleic acid electrophoresis (Hansen, 1981). However, proteins containing disulfide bonds do not separate on a BAC gel. The subunits with the sulfhydryl moiety bind to the gel matrix close to the origin of the gel, and separation does not occur, so BAC is not recommended for preparative protein electrophoresis, though it is useful for proteins which do not contain any sulfhydryl bonds.

One other crosslinker, piperazine diacrylamide (PDA), can replace bis-acrylamide in isoelectric focusing (classical tube gel or flatbed gel) experiments. PDA imparts greater mechanical strength to a polyacrylamide gel, and this is desired at the low acrylamide concentrations used in isoelectric focusing (IEF gels). Some proteomics researchers use PDA to crosslink the 2nd dimension SDS-PAGE slab gels as well, because of the increased mechanical strength, and because the background of a silver stained gel is much better when PDA is used (Hochstrasser, 1988). For further information on these crosslinkers, see Allen and Budowle, 1994.
How Do You Control Pore Size?

Pore size is most efficiently and predictably regulated by manipulating the concentration of acrylamide in the gel. Pore size will change with the amount of crosslinker, but the effect is minimal and less predictable (Figure 12.3). Note the greater impact of acrylamide concentration on pore size, especially at the levels of crosslinker usually present in gels (2.7–5%).

Practical experience with various ratios of acrylamide:bis have shown that it is best to change pore size by changing the acry-
Figure 12.3 Electron micrograph of polyacrylamide gels of various %T, showing the change in pore size with the change in %T and %C. From Ruechel, Steere, and Erbe (1978, Fig. 3, p. 569). Reprinted from Journal of Chromatography, volume 166, Ruechel, R., Steere, R., and Erbe, E. Transmission-electron Microscopic Observations of Freeze-etched Polyacrylamide gels. pp. 563–575. 1978. With permission from Elsevier Science.
lamide concentration. A 19:1 ratio of acrylamide to bis (5% \(C \); see below for calculation of \(C \)) is used in low concentration gels, such as IEF gels, and sequencing gels, to impart greater mechanical strength to the gel. A 29:1 ratio (3.4% \(C \)) is used for concentrations of acrylamide from 8% to 12%, and a 37.5:1 ratio (2.67% \(C \)) is used for concentrations of acrylamide above 12% to provide flexibility to the gel. SDS-PAGE and native gels are usually run at 10% to 12%. For comparison, a 12% acrylamide gel with a 5% crosslinker concentration will be brittle and will tear easily.

How Do You Calculate \(%T \) and \(%C \)?

Percent \(T \) is \(T = \frac{(g \text{ acrylamide} + g \text{ bis-acrylamide})}{100 \text{ ml water}} \times 100 \).

Percent \(C \) is \(C = \frac{(g \text{ bis-acrylamide})}{(g \text{ acrylamide} + g \text{ bis-acrylamide})} \times 100 \).

Note that \(%C \) is not the grams \(\text{bis-acrylamide}/100 \text{ ml water} \), but rather the percentage of crosslinker as a function of the total weight of acrylamide and \(\text{bis-acrylamide} \) used.

Why Should You Overlay the Gel? What Should You Use for an Overlay?

An overlay is essential for adequate resolution. If you do not overlay, the bands will have the shape of a meniscus. Two closely spaced bands will overlap; the middle of the top band will extend down between the front and back of the bottom band. Overlaying the gel during polymerization will prevent this problem.

Common overlays are best quality water, the buffer used in the gel at a 1× dilution, and water-saturated t-butanol. The choice is a matter of personal preference. Many researchers prefer the alcohol overlay because it will not mix with the gel solution. However, alcohol will turn acrylic plastic (Perspex) from clear to white, and it is difficult to pipet without spills.

Regarding Reproducible Polymerization, What Practices Will Ensure That Your Bands Run the Same Way Every Time?

Reproducible polymerization is one of the most important ways to ensure that your samples migrate as sharp, thin bands to the same location in the gel every time. Attention to polymerization will also help keep the background of your stained gels low. Acrylamide polymerization is affected by the amount of oxygen gas dissolved in the solution, the concentrations and condition of the
catalysts, the temperatures and pH of the stock solutions, and the purity of the gel components. The following paragraphs discuss how to ensure reproducible polymerization and therefore reproducible, excellent gels.

Eliminate Dissolved Oxygen

Oxygen quenches the free radicals generated by TEMED and APS, thus inhibiting the polymerization reaction. Dissolved oxygen must be eliminated via degassing with a bench vacuum or better (20–23 inches of mercury or better) for at least 15 to 30 minutes with stirring (see Appendix A). To achieve reproducible polymerization and consistent pore size, allow the gel solutions, which should be stored in the cold to inhibit breakdown, to come to room temperature before casting a gel. Note that cold gel solutions contain more dissolved oxygen, and low temperature directly inhibits the polymerization reaction. If the temperature during polymerization is not controlled, the pore size will vary from day to day.

Symptoms of Problems with Catalyst Potency

The best indicator of a problem catalyst is poor polymerization of the gel. If you’re confident that you have good quality chemicals and water, and have degassed your solutions to remove oxygen, and still the sides of the wells do not polymerize around the teeth of the comb, a degraded catalyst is the likely explanation.

Separation of the gel from the spacers also indicates poor polymerization; the dye front will migrate in the shape of a frown. A third symptom of poor polymerization is schlieren in the body of the gel. Schlieren are swirls, changes in the refractive index of the gel, where polymerization has been very slow or has not occurred. The gel has no structure at the location of the schlieren. It breaks apart in pieces at the schlieren lines, when removed from the cassette. Schlieren can also be caused by inadequate mixing of the gel solution before pouring it into the gel cassette.

It is difficult to predict the potency of TEMED unless you know its history of use. TEMED is very hygroscopic and will degrade within six months of purchase if it becomes contaminated with water. Therefore store TEMED in a desiccator at room temperature if you use it frequently, or at 4°C if you use it less than once a week. Cold TEMED must be warmed to room temperature before the bottle is opened to prevent condensation from contaminating the TEMED liquid.
Determine the potency of APS by watching it dissolve, or by listening to it. Weigh out 0.1 g of APS in a small weigh boat, and then place the weigh boat with the APS onto a dark surface. Add 1 ml of highest purity water directly to the weigh boat, to make a 10% solution. If the APS is potent, you will see tiny bubbles fizzing off the surface of the APS crystals. No fizzing is observed with deteriorated APS. Or put 0.1 g of APS in a 1.5 ml Eppendorf tube, and add 1 ml of water. Cap it and listen for the fizzing. If you do not hear little crackling noises, like fizzing, it has lost its potency and should be replaced.

Stored solutions of TEMED and APS may polymerize gels, but if you want to minimize the chance of failure and maximize reproducibility, especially with protein gels, prepare APS fresh every day, store TEMED dry at room temperature in a desiccator, and degas your solutions before polymerization.

Temperature

The temperature of polymerization should be 20 to 22°C. If your lab is below 20°C, or if the temperature varies more than five degrees from day to day, reproducibility problems may arise. Note that cold delays polymerization, heat speeds it, and the reaction itself is exothermic.

What Catalyst Concentration Should You Use?

The appropriate catalyst concentration depends on what gel % you are polymerizing. Please refer to Table 12.1.

Note that these catalyst concentrations are for protein PAGE gels only. Sequencing gels are polymerized differently. The final concentrations of catalysts for a 6 %T sequencing gel, which allow the solution to be introduced into the gel sandwich before polymerization starts, are TEMED, 0.1% (v/v), and APS, 0.025% (w/v).

What Is the Importance of Reagent Purity on Protein Electrophoresis and Staining?

Reagent purity is extremely important for reproducible results. If the reagents and water you use are very pure, then the polymerization and electrophoresis will be controllable and reproducible from day to day. Any problems you have can be ascribed to the sample and its preparation. The following discussion goes into various reagent purity problems and their resolution.
The common contaminants of water are metal ions, especially sodium and calcium, the halide ions, especially chloride, and various organic impurities (Chapter 3 discusses water impurities in greater depth.) Each kind of impurity has a different effect; we will not attempt to enumerate all these effects here. Copper ions inhibit acrylamide polymerization, but copper metal and other metals initiate polymerization. Ions can cause ionic interactions between the macromolecules in your sample, perhaps causing aggregation of certain proteins, with band smearing the result. The organic contaminants can also cause loss of resolution. The effects on staining the samples in the gel are also significant, as impurities in the water can bind the stain, causing bad background. A detailed discussions about preventing background in a stained gel is provided below. The principle here is that impurities in the water cause problems, and the purest water available should be used for electrophoresis to help prevent these problems.

Bacteria in your water purifier can also cause artifacts, such as vertical pinpoint streaks in your gel or on blots stained for total protein. Bacteria migrating up the hose from the sink to the filter cartridges is a common cause of contamination. Note that bacteria can grow in dishwater left to sit in the sink, so be careful where you place the end of the hose that carries water from the water purifier.

Another possible source of contamination in your water is the maintenance department in your institution, especially if your water purifier lacks a charcoal filter for removing organic contaminants. The maintenance department may add organic amine compounds to the distilled water system at your institution to keep scale off the walls of the pipes providing distilled water to your lab. This is commonly done every six months or so. Such contaminants will cause background problems in your stained gels, among other artifacts. The water used to prepare solutions for electrophoresis and staining procedures should be charcoal column-purified and deionized.
Reagents

Impure reagents—from gel components to buffer salts, stains, and dyes—can create problems similar to impure water. Gels will not be reproducible, resolution may be poor, and background staining may be substantial. For reproducible results and good resolution, always use the purest components available, electrophoresis grade.

WHICH GEL SHOULD YOU USE? SDS-PAGE, NATIVE PAGE OR ISOELECTRIC FOCUSING?

The strategy you choose depends on your goal, of course. If you want to determine the molecular weight of your protein, use SDS-PAGE. If you want to measure the isoelectric point of your protein, choose isoelectric focusing (IEF). For proteomics work, use 2-D electrophoresis (IEF followed by SDS-PAGE). Native PAGE is used to assay enzyme activity, or other biological activity, for example, during a purification procedure. Each kind of protein PAGE has issues to consider, and these issues are addressed in the next section. Improving gel resolution is addressed in a separate section below.

Will Your SDS Gel Accurately Indicate the Molecular Weight of Your Proteins?

Estimation of the molecular weight of the protein of interest, accurate to within 2000 to 5000 daltons, requires the protein band(s) to run within the middle two-thirds of the gel. This is illustrated in the graph of the log of the molecular weight of a set of standard proteins vs. the relative mobility of each one (Figure 12.4). Note that the proteins with a relative mobility below 0.3 or above 0.7 fall off the linear portion of the curve. Thus the most accurate molecular weight values are obtained when the relative mobility of the protein of interest is between 0.3 and 0.7. This means that if your protein doesn’t enter the gel very well, you must change the gel %T before you can get a good molecular weight value. The sample may require a different (better) solubilization procedure also. (See comments on sample preparation, below.)

Should You Use a Straight % Gel or a Gradient Gel?

If you want to resolve proteins that are within a few thousand daltons of each other in molecular weight, then use a straight percent gel (the same concentration of acrylamide throughout the gel). To get baseline resolution for such proteins, that is, to get clear, unstained space between bands, you may need to use a
longer gel. Mini gels have 6 to 8 cm resolution space. Large gels have 12 to 20 cm space. The closer the bands are in molecular weight, the longer the gel must be.

A gradient gel is used to resolve a larger molecular weight range than a straight percent gel. A 10% gel resolves proteins from 15 to 100 kDa, while a 4% to 20% gradient gel resolves proteins from 6 to 300 kDa, although the restriction about good molecular weight determination discussed above still holds. Accurate molecular weights can be determined with gradient gels (Podulso and Rodbard, 1980).

What Issues Are Relevant for Isoelectric Focusing?

Isoelectric focusing (IEF) measures the isoelectric point, or pI, of a protein. The main problem for IEF is sample solubility, seen as streaking or in-lane background on the stained IEF gel, or horizontal streaking on a 2-D gel. Sample solubilization should be optimized for each new sample; searching the scientific literature to identify protocols used for similar samples is a good starting point. Information on sample preparation is included below in the discussion about improving resolution.

At present there are two kinds of IEF gels in use: gels formed with carrier ampholytes, and gels formed with acrylamido buffers, known as IPG gels (immobilized pH gradient gels).
The two kinds of gels suffer from problems specific to each kind of gel. For gels formed with carrier ampholytes, the main problem is cathodic drift, the movement of the pH gradient off the basic part of the IEF gel with time. With cathodic drift, the pH gradient gradually drifts off the basic side of the gel, forming a plateau in the center of the pH gradient. Cathodic drift occurs after long focusing times. The drift is controlled by determining the optimum time of focusing in volt-hours, and then always, reproducibly, focusing your gels for the determined number of volt-hours. The optimum time of focusing is determined by performing a time course, setting up identical gels, and then taking them down one by one as time passes, and determining from the results when the proteins have reached the optimum resolution. Gels formed with carrier ampholytes are also limited in the amount of protein that can be focused, since with an overloaded gel, the gradient will deform before all the protein has moved to its pI.

Cathodic drift is completely avoided by the use of IPG gels for isoelectric focusing. The pH gradient is cast into the polyacrylamide gel, which is supported by a plastic backing. There is no cathodic drift because the pH gradient is fixed during the gel-casting step, rather than formed during the first part of the electrophoresis, as with carrier ampholyte gels.

There are major additional advantages to IPG gels: they are much more reproducible than carrier ampholyte gels, and they can focus much more protein than carrier ampholyte gels, up to 5 mg or more, because the fixed pH gradient cannot be overbuffered as above, and because electrophoresis can be carried out at much higher voltage potentials (up to 10,000 volts) and for much longer volt-hours (up to 100,000 volt-hours for 17–18 cm IPG gels). Proteins isolated using 2-D electrophoresis can be sequenced or analyzed by mass spectrometry, and thus identified. The problems with IPG strips are still being identified. One problem for 2-D electrophoresis seems to be the loss of some hydrophobic (membrane) proteins during transfer of the proteins from the IPG strip to the SDS-PAGE gel (Adessi et al., 1997; Molloy, 2000). Very low and very high molecular weight proteins may also be problematic, as well as basic proteins. Procedures to avoid these problems must be worked out for each sample.

How Can You Resolve Proteins between Approximately 300 and 1000 kDa?

We suggest you use a composite gel for very large proteins. Composite gels are made of 1% acrylamide and 1% low melt agarose. The agarose makes the acrylamide strong enough to...
handle, and the acrylamide makes the pores in the agarose gel small enough to resolve proteins above about 300kDa. Composite gels are tricky to pour, as the gel cassette must be warmed to about 40°C, and the gel mixture must be cooled to just above the agarose gelling point before pouring. The mixture must be introduced into the gel cassette within a few seconds of adding the catalysts, as acrylamide polymerization takes place within one or two minutes at elevated temperatures. Andrews (1986) has a general procedure for composite gels.

Another option for very large proteins is the use of PAGE with some additive that may enlarge the pore size and thus permit the separation of very large proteins. We have not tested this option, and thus have no recommendations, but Righetti et al. (1992) have used PEG with a standard 5%T gel to form much larger pores than normal.

WHAT ISSUES ARE CRITICAL FOR SUCCESSFUL NATIVE PAGE?

Sample Solubility

Native PAGE is performed under conditions that don’t denature proteins or reduce their sulfhydryl groups. Solubilizing samples for native PAGE is especially challenging because most non-denaturing detergents do not solubilize complex samples well, and the unsolubilized proteins stick on the gel origin and bleed in, causing in-lane background.

Location of Band of Interest

Sample proteins move in a native gel as a function of their charge as well as their mass and conformation, and because of this, the location of the protein band of interest may be difficult to determine. For instance, in some buffer systems, BSA, at 64kDa, will move in front of soybean trypsin inhibitor, at 17kDa (Garfin, 2000). The easiest way to detect the protein of interest is to determine its location by Western blotting. Alternatively, the protein’s location can be monitored by enzyme activity or bioassay, which usually requires elution from the gel. Elution is discussed below.

How Can You Be Sure That Your Proteins Have Sufficient Negative Charge to Migrate Well into a Native PAGE Gel?

To determine this, it is useful to have some idea of the pI of the protein of interest. The pH of the buffer should be at least 2 pH units more basic than the pI of the protein of interest. An alter-
native is to use an acidic buffer system, and reverse the polarity of the electrodes. This works well for very basic proteins.

Buffer Systems for Native PAGE

Buffer systems for native PAGE are either continuous or discontinuous. Discontinuous buffer systems focus the protein bands into thin fine lines in the stacking gel, and these systems are preferred because they provide superior resolution and sample volumes can be larger and more dilute. In a discontinuous buffer system, the buffers in the separating gel and stacking gel, and the upper and lower tank buffers, may all be different in concentration, molecular species, and pH. The reader should initially try the standard Laemmli SDS-PAGE buffer system without the SDS and reducing agent. That buffer system is relatively basic, so most proteins will be negatively charged and run toward the anode. If this is not successful for your protein, consult Chrambach and Jovin (1983), who have published a set of discontinuous buffer systems covering the whole range of pH, for additional discontinuous buffer systems.

Continuous buffer systems have the same buffer throughout the gel, sample and running buffer. Continuous buffer systems can be found in McLellan (1982). Continuous buffer systems are easier to use. For protein gels, the choice between continuous and discontinuous buffer systems is usually made on the basis of what works, and the pI of the protein(s) of interest.

Nucleic acid gels, both PAGE and agarose gels, use the same buffer in all parts of the system: in the gel, in the sample and in the running buffer (urea, which is uncharged, may be omitted from the running buffer). The pH, type of buffer, and buffer concentration are the same throughout the system in most methods of nucleic acid electrophoresis. This makes the gels easy to pour and to run.

The disadvantage of a continuous buffer system is that the samples must be low volume, because the bands in such a system will be as tall or thick as the height of the sample in the well, in a vertical and horizontal slab gel. This is true of both protein or nucleic acid samples.

WHAT CAN GO WRONG WITH THE PERFORMANCE OF A DISCONTINUOUS BUFFER SYSTEM?

In protein electrophoresis, the Laemmli buffer system used for SDS-PAGE has four different buffers, all different in pH, compo-
sition, and concentration. Of course, the main voltage potential across the whole gel drives the proteins into and through the gel. However, the differences in buffer pH and concentration set up small voltage potentials within the cell voltage potential. These small voltage potentials form across areas in a lane where the number of ions is lower than elsewhere in the lane, causing the mobility of the macromolecules to increase or decrease, depending on the voltage potential in that specific location in the lane. This is the basis of the “stacking condition” (Hames and Rickwood, 1981).

If the discontinuous buffer protocol is not carried out properly, the small voltage potentials can occur in the wrong places, causing the protein bands to spread out sideways into the next lane, or causing the lane to narrow into a vertical streak of unresolved protein. Thus it is important to make up the buffers for a discontinuous buffer system properly. For instance, in the Laemmli buffer system, the resolving gel buffer is TRIS, pH 8.8 (some authors use pH 8.9). TRIS base is dissolved, and pH’d to the correct value with 6N HCl. If the pH is made too low, and base is added to correct the error, then the total ionic strength of the separating gel buffer will be too high, and the lanes in the gel will narrow. Or, if the pH is too high (not enough HCl), the bands will broaden and smear. (A TRIS-based separating gel buffer takes about 30 minutes to pH correctly. It is best to proceed slowly so that the buffer is made correctly.)

WHAT BUFFER SYSTEM SHOULD YOU USE FOR PEPTIDE ELECTROPHORESIS?

The most favored buffer system currently is that described by Schägger and von Jagow (1987). This discontinuous buffer system uses much higher concentrations of buffer salts, but the ratios of the salts are balanced. So the movement of the small proteins (peptides) is slowed, and they are separated behind the dye front. The results with this buffer system are excellent, and it has been widely used for several years for peptides and proteins up to 100kDa.

POWER ISSUES

Macromolecules move through a polyacrylamide or agarose gel because they carry a charge at the pH of the buffer used in the
system, and the voltage potential put across the cell by the power supply drives them through the gel. This is the effect of the main voltage potential, set by the power supply.

Constant Current or Constant Voltage—When and Why?

The choice of constant current or constant voltage depends on the buffer system, and especially on the size of the gel. Historically constant voltage was used because constant current power supplies were not available. However, currently available programmable power supplies, with constant voltage, constant current, or constant power options, permit any power protocol to be used as needed.

Generally speaking, constant current provides better resolution because the heat in the cell can be controlled more precisely (the higher the current, the higher the heat, and the poorer is the resolution, due to diffusion of the bands.) However, constant current runs will take longer than constant voltage runs (Table 12.2).

Table 12.2 Use of Power Supply Parameters

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Size of cell or inter-electrode distance</th>
<th>Buffer System</th>
<th>Power Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS-PAGE</td>
<td>Mini cell: gel 6–8 cm long</td>
<td>Discontinuous</td>
<td>Constant voltage used routinely; better resolution with constant current</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Large cell: gel 16–20 cm long</td>
<td>Discontinuous</td>
<td>Constant current required; use of constant voltage degrades resolution significantly in the bottom $\frac{1}{3}$ of the gel</td>
</tr>
<tr>
<td>Native PAGE</td>
<td>Large or mini cell</td>
<td>Discontinuous</td>
<td>Constant current required; use of constant voltage degrades resolution significantly in the bottom $\frac{1}{3}$ of the gel</td>
</tr>
<tr>
<td>Native PAGE</td>
<td>Large or mini cell</td>
<td>Continuous</td>
<td>Constant voltage (no advantage to constant current; cooling recommended for good resolution)</td>
</tr>
</tbody>
</table>

Note: Recommended power conditions can vary among manufacturers.
Why Are Nucleic Acids Almost Always Separated via Constant Voltage?

Nucleic acids are usually separated with a continuous buffer system (the same buffer everywhere). Under these conditions, the runs take the same time with constant voltage as with any other parameter held constant, and the resolution is not improved using another parameter as constant. This is usually true for both agarose and polyacrylamide gel electrophoresis.

The use of continuous buffers in nucleic acid electrophoresis makes the gels easy to pour and to run. As with protein separation, small sample sizes must be utilized within continuous buffer systems, particularly when using vertical systems, to prevent bands from overlapping.

Why Are Sequencing Gels Electrophoresed under Constant Power?

Sequencing gels are run under constant voltage or constant power, at a temperature between 50 and 55°C. If constant voltage is used, then the voltage must be changed during the run, after the desired temperature is reached. If constant power is used, the power can be set, and the voltage and current will adjust as the run proceeds, maintaining the elevated temperature required for good band resolution. Elevated temperature and the urea in the sequencing gel maintain the DNA in a denatured condition.

Should You Run Two Sequencing Cells off the Same Power Supply under Constant Power?

If the power supply can draw enough current (power) to accommodate two sequencing cells, one might conclude that two sequencing gels could be run off the same power supply. Don’t do this! If something happened to one cell, for instance, if the buffer level fell below the level of the gel so that the circuit in that cell was interrupted, then the other cell would carry the power needed for two. The buffer in the second cell would boil away, and the cell would likely catch fire. In practice, it is very difficult to get each cell to carry exactly the same current load through the entire run. When the current loads differ, a vicious cycle/runaway condition can arise, where one cell requires more current to maintain the voltage, causing the power supply to increase its output, but the second cell, because of its lower resistance, receives the additional power. It just isn’t safe to run two sequencing cells on one power supply under constant power.

It is acceptable to run two sequencing cells under constant voltage from the same power supply, as long as the power supply
can provide the needed current. It is urgently recommended that you remain in the room while the run is proceeding, in case a problem occurs.

IMPROVING RESOLUTION AND CLARITY OF PROTEIN GELS

How Can You Generate Reproducible Gels with Perfect Bands Every Time?

High-quality, reproducible results are generated by using pure, electrophoresis grade chemicals and electrophoresis grade water, by preparing solutions the same way every time and with exact measurement of volumes, by correctly polymerizing your gels the same way every time as discussed above, and by preparing the samples so that they enter the gel completely, without contaminating components that can degrade the resolution. The most important factors for good band resolution and clarity are correct sample preparation and the amount of protein loaded onto the gel, and they are discussed in greater detail below. Finally, the detection procedure must be followed carefully, with attention to detail and elapsed time.

SAMPLE PREPARATION—PROBLEMS WITH PROTEIN SAMPLES

Some samples require exceptional patience and work to determine an optimal preparation protocol. Beyond what follows, a literature search for procedures that worked for proteins similar to yours is recommended.

What Procedures and Strategies Should Be Used to Optimize Protein Sample Preparation?

Consider the cellular location of your protein of interest, and attempt to eliminate contaminating materials at the earliest stages of the purification. If it is a nuclear binding protein, first isolate the nuclei from your sample, usually with differential centrifugation, and then isolate the proteins from the nuclei. If it is a mitochondrial protein, use differential centrifugation to isolate mitochondria (spin the cell lysate at 3000 \(\times g \) to remove nuclei, then at 10,000 \(\times g \) to bring down mitochondria). If the protein is membrane bound, use a step gradient of sucrose or other centrifugation medium to isolate the specific membrane of interest. For soluble proteins, spin the cell lysate at 100,000 \(\times g \) to remove all cellular membranes and
use the supernatant. Note that nucleic acids are very sticky; they can cause proteins to aggregate together with a loss of electrophoretic resolution. If you have smearing in your sample, add 1 μg/ml of DNase and RNase to remove the nucleic acids.

Is the Problem Caused by Sample Preparation or by the Electrophoresis?

If a nonprestained standard runs well in a gel, producing sharply defined, well-shaped bands, then any problems in the sample lanes lie in sample preparation or in the sample buffer. For this reason we urge you to run a standard on every gel.

Is the Problem Caused by the Sample or the Sample Buffer?

For lyophilized standards, make fresh standard buffer. Sometimes it is difficult to determine whether the problem is in the sample or the sample buffer. Run the standard both with and without the sample buffer to determine this. It is best to prepare the sample buffer without reducing agent—dithiothreitol (DTT), beta-mercaptoethanol (BME), or dithioerythritol (DTE)—freeze it into aliquots, and add the reducing agent to the aliquot before use. All these reducing agents evaporate readily from aqueous solution. Adding the reducing agent fresh for each use means the reducing agent will always be fresh and in full strength.

Buffer components may separate out during freezing, especially urea, glycerol, and detergents. Aliquots of sample buffer must be mixed thoroughly after thawing, to make sure the buffer is a homogeneous solution.

How Do You Choose a Detergent for IEF or Native PAGE?

Triton X-100 is often used to keep proteins soluble during IEF or native PAGE, but it may solubilize only 70% of the protein in a cell (Ames and Nikaido, 1976). SDS is the best solubilizer, but it cannot be used for IEF because it imparts a negative charge to the proteins. During the IEF, it is stripped off the proteins by the voltage potential, and the formerly soluble proteins precipitate in the IEF gel, resulting in a broad smear. Of course, SDS cannot be used in native PAGE because it denatures proteins very effectively. Some authors state that SDS may be used in combination with other detergents at 0.1% or less. It may help solubilize some proteins when used this way (Molloy, 2000). However, this is not recommended, as the protein loads must remain low, and other problems may result (Molloy, 2000).
Many non-ionic or zwitterionic detergents can be used for IEF or native PAGE to keep proteins soluble. CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) is most often used, as it is a very good solubilizer, and is non-denaturing. It should be used from 0.1% up to 4.0%. Another very effective solubilizer is SB 3-10 (decyl(dimethylammoniopropanesulfonate), but it is denaturing (Rabilloud et al., 1997). Other detergents, designed especially for IEF on IPG gels, have recently been designed and used successfully (Chevallet et al., 1998; Molloy, 2000). The minimum detergent concentration for effective solubilization must be determined for each sample (Rabilloud et al., 1999). Again, to learn what detergent might be effective for your sample, we suggest a literature search.

What Other Additives Can Be Used to Enhance Protein Solubility?

Some proteins are very difficult to solubilize for electrophoresis. Urea can be used, from 2 to 8 M or 9.5 M. Thiourea can be used at up to 2 M; it greatly enhances solubility but cannot be used at higher concentration. This is because above 2 M, the urea, thiourea, or detergent may precipitate out (Molloy, 2000). The total urea concentration (urea + thiourea) cannot be above approximately 7.0 M if thiourea is used with a bis gel due to these solubility constraints.

AGAROSE ELECTROPHORESIS

What Is Agarose?

Agarose, an extract of seaweed, is a polymer of galactose. The polymer is 1,3-linked (beta)-D-galactopyranose and 1,4-linked 3,6-anhydro-(alpha)-L-galactopyranose. The primary applications are electrophoresis of nucleic acids, electrophoresis of very large proteins, and immunoelectrophoresis.

What Is Electroendosmosis (−M, or EEO)?

−M, is a measure of the amount of electroendosmosis that occurs during electrophoresis with a particular grade of agarose. Electroendosmosis is the mass movement of water toward the cathode, against the movement of the macromolecules, which is usually toward the anode. High −M means high electroendosmosis. The mass flow of water toward the cathode is caused by fixed negative charges in the agarose gel (sulfate and carboxyl groups on the agarose). Depending on the application, electroendosmo-
sis causes loss of resolution, or it can enable certain kinds of separations to occur, for instance, during counterimmunoelectrophoresis. Applications for agarose preparations of different $-M_r$ values are shown in Table 12.3.

Table 12.3 Agarose Preparations of Different $-M_r$ Values

<table>
<thead>
<tr>
<th>Application</th>
<th>Kind of Agarose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome separation</td>
<td>Pulsed field grade or chromosomal grade; each kind of agarose—molecular biology grade, pulsed field grade, or chromosomal grade—will result in different run times in a pulsed field run, depending on the size of the chromosomes.</td>
</tr>
<tr>
<td>Size separation and recovery of DNA or RNA</td>
<td>Low-melt agarose melts at 65°C, and nucleic acids can be recovered with a syringe filter above gelling temperature (35°C).</td>
</tr>
<tr>
<td>Isoelectric focusing of proteins</td>
<td>Zero $-M_r$ agarose</td>
</tr>
<tr>
<td>Immunoelectrophoresis of proteins</td>
<td>Standard low $-M_r$ agarose</td>
</tr>
<tr>
<td>(for a review of the many kinds of immunoelectrophoresis, see Axelsen et al., 1973)</td>
<td></td>
</tr>
</tbody>
</table>

Are Double-Stranded Markers Appropriate for Sizing Large Single-Stranded (Not Oligonucleotide) DNA?

A full discussion is given below under “Standardizing Your Gels.”

What Causes Nucleic Acids to Migrate at Unexpected Migration Rates?

Supercoiled DNA is so twisted about itself that it has a smaller Stoke’s radius (hydrated radius), and moves faster than some smaller DNA fragments. If supercoiled DNA is nicked, it will unwind or start to unwind during the electrophoresis, and become entangled in the agarose. As this occurs, the DNA slows down its migration, and produces unpredictable migration rates.

What Causes Commercial Preparations of Nucleic Acid Markers to Smear?

There are several reasons why nucleic acid markers smear:
1. Too much marker was added to the lane.
2. The markers were electrophoresed too fast (too hot).
3. The markers were contaminated with DNase.
4. The higher molecular weight markers were sheared by rough pipeting.

What Causes Fuzzy Bands?

The sample might have been degraded by endogenous DNase or that present in the enzymes or reagents used in sample preparation. You may see, "beards" or tails on the bands. For pulsed field samples (in agarose blocks), wash the gel blocks longer and at higher temperatures.

The gel may be running too hot, or the buffer may have been used up, causing high currents that overheat the gel. Turn the voltage down, and remake your buffers, paying careful attention to the dilution and mixing of the stock solution.

Samples loaded too high in the well (overloading) can also produce fuzzy results. DNA near the surface of the gel will run faster than the DNA remaining in solution within the well. The bands will run as inclined planes (\(\backslash\)) rather than vertically (\(\|\)). If the bands are viewed or imaged from directly above they will appear fuzzy. When viewed from a slight angle, the bands will appear normal. The sample should not fill the entire well. Rather, it should occupy half or less of the well. Also the samples should be level and parallel to the surface of the gel in the wells.

Poor-quality agarose can also contribute to a fuzzy appearance. Molecular biology grade or good-quality agarose will prevent this.

Bio-Rad technical support has had a report of a contamination in the user's water that was breaking down the DNA. When the water used for the preparation of the gel and buffers was autoclaved, the problem was eliminated.

ELUTION OF NUCLEIC ACIDS AND PROTEINS FROM GELS

Table 12.4 summarizes the features, benefits and limitations of different elution strategies. DNA purification and elution is also discussed in Chapter 7.

DETECTION
What Should You Consider before Selecting a Stain?

There are several factors to consider before selecting a stain, primary among them the sensitivity needed. Tables 12.5 and 12.6
<table>
<thead>
<tr>
<th>Medium or Macromolecule</th>
<th>Feature</th>
<th>Benefit</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleic acids</td>
<td>Freeze and Squeeze—Cut out the band of interest from the gel, put it in an Eppendorf microtube, and freeze it. This destroys the structure of the agarose gel. Then cut off the bottom of the Eppendorf tube, put the microtube into a slightly larger tube, and spin it down. The liquid containing the band of interest will be in the larger tube, and the agarose will remain in the smaller tube. Electroelution</td>
<td>Easy and fast</td>
<td>Such kits don’t work with oligos or very large nucleic acids</td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td>Freeze and squeeze kits</td>
<td>Easy and fast</td>
<td>Not good below 30bp, which don’t electrophorese in an agarose gel</td>
</tr>
<tr>
<td>Proteins</td>
<td>Freeze and squeeze kits</td>
<td>Easy and fast</td>
<td>Buffer systems not worked out for very large proteins</td>
</tr>
<tr>
<td>Polyacrylamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleic Acids</td>
<td>BAC crosslinkers</td>
<td>Excellent recoveries</td>
<td>Require subsequent column to separate nucleic acids from decrosslinked polyacrylamide</td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td>Crush gels in an equal volume of elution buffer; let sit overnight</td>
<td>Easy to do, requires no equipment</td>
<td>Best recovery no more than 50%</td>
</tr>
<tr>
<td>Proteins</td>
<td>Electroelution</td>
<td>Excellent recoveries</td>
<td>Some proteins bind to dialysis membrane</td>
</tr>
<tr>
<td></td>
<td>Crush gel piece in an equal volume of elution buffer, let sit overnight</td>
<td>Relatively easy to do, requires no equipment</td>
<td>Best recovery no more than 50%</td>
</tr>
</tbody>
</table>

(continued)
Table 12.4 (Continued)

<table>
<thead>
<tr>
<th>Medium or Macromolecule</th>
<th>Feature</th>
<th>Benefit</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAC, DADT, DHEBA</td>
<td>Good recoveries possible with certain proteins, depending on subsequent application</td>
<td>Require subsequent column to separate protein from decrosslinked polyacrylamide; periodate oxidizes sulfhydryl containing amino acid sidechains; polypeptides with sulfhydryl groups bind to BAC-crosslinked matrix</td>
<td></td>
</tr>
<tr>
<td>Preparative Electrophoresis</td>
<td>Excellent recoveries</td>
<td>May require fraction collector, peristaltic pumps, chillers, other accessories</td>
<td></td>
</tr>
<tr>
<td>Peptides</td>
<td>Electroelution</td>
<td>Excellent recoveries possible, depending on nature and size of peptide.</td>
<td>Time and power conditions must be optimized for especially small peptides to prevent their being driven into the dialysis membrane</td>
</tr>
</tbody>
</table>

provide a general guide to stain sensitivity, and mention other considerations.

Will the Choice of Stain Affect a Downstream Application?

This is an important question. Colloidal Coomassie and Sypro® Ruby can be used on 2-D gels when mass spectrometry (mass spec) is the detection procedure. Certain silver stains can also be used to stain samples for mass spec analysis because of improvements in the sensitivity of mass spectrometers. Sypro Red covers three orders of magnitude, Coomassie covers two, and silver stains provide coverage over one magnitude. Not all silver stains give good mass spectrometry results and those which are used are not as good as Coomassie or Sypro Ruby (Bio-Rad Laboratories, R&D).

For amino acid sequencing, the gel is usually blotted to PVDF, stained for the protein of interest, and then sequenced. Immunodetection or other more sensitive methods can be used, but usually the sequencing requires at least 1μg of protein. For
Table 12.5 Common Protein Stains

<table>
<thead>
<tr>
<th>Stain</th>
<th>Application</th>
<th>Sensitivity</th>
<th>Benefits/Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coomassie brilliant blue</td>
<td>SDS-PAGE</td>
<td>1 μg protein per band</td>
<td>Easy, traditional stain; low sensitivity, high disposal costs</td>
</tr>
<tr>
<td>R-250 (with MeOH/HOAc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coomassie brilliant blue</td>
<td>SDS-PAGE, 2-D,</td>
<td>100 ng per band</td>
<td>Much better sensitivity, easy disposal; long staining times for best results</td>
</tr>
<tr>
<td>G-250 (colloidal, low or no MeOH)</td>
<td>native PAGE, IEF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver stain</td>
<td>SDS-PAGE, 2-D,</td>
<td>10 ng per band</td>
<td>Excellent sensitivity, tricky to perform, requires excellent quality water</td>
</tr>
<tr>
<td></td>
<td>native PAGE, IEF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper stain (requires SDS</td>
<td>SDS-PAGE only</td>
<td>10–100 ng per band</td>
<td>Fast and easy, good before blotting</td>
</tr>
<tr>
<td>to work)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc stain (requires SDS</td>
<td>SDS-PAGE only</td>
<td>10–100 ng per band</td>
<td>Fast and easy, good before blotting</td>
</tr>
<tr>
<td>to work)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sypro Orange (requires SDS</td>
<td>SDS-PAGE 2-D</td>
<td>10 ng per band</td>
<td>Published sensitivities may be difficult to attain; SDS concentration critical</td>
</tr>
<tr>
<td>to work)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sypro Ruby</td>
<td>SDS-PAGE 2-D</td>
<td>10 ng per band</td>
<td>Easy to use, expensive, stain of choice for 2-D and subsequent mass spectrometry and quantitative analysis</td>
</tr>
</tbody>
</table>

Table 12.6 Common Nucleic Acid Stains

<table>
<thead>
<tr>
<th>Stain</th>
<th>Application</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethidium bromide</td>
<td>Sub-cell gels. Note that this stain is carcinogenic and is viewed only on a UV light box. Good safety practices are mandatory with this stain. Disposal is also an issue.</td>
<td>1–10 ng</td>
</tr>
<tr>
<td>Silver stain</td>
<td>PAGE gels, agarose gels with certain silver stains. Disposal is an issue.</td>
<td>1–10 ng</td>
</tr>
<tr>
<td>Stains all</td>
<td>Stains various cell components with different colors.</td>
<td>100 ng–1 μg</td>
</tr>
</tbody>
</table>
this reason we suggest that you stain your blot with Coomassie. This does not interfere with sequencing. Note that if you want to blot your gel after staining, only reversible stains such as copper stain and zinc stain can be used with good success. If you stain your gel with Coomassie or silver, the proteins are fixed in the gel and are very difficult to transfer to a membrane. Only copper or zinc stains are recommended before blotting a gel for immune detection.

Is Special Equipment Needed to View the Stain?

A light box is helpful for viewing the colored stains—Coomassie, silver, copper, and zinc—on gels. Digitizing the stained image from the gel is the best way to store the data for silver-stained gels, as they darken when dried. Fluorescent stains require at least a UV light box, and may require a fluorescent imager or other specialized scanner, depending on the excitation and emission wavelengths of the chosen stain.

How Much Time Is Required for the Various Stains?

The speed of staining is quite variable depending on the quality of water, the temperature, and how closely the staining steps are timed. Gels stained with Coomassie can be left in stain from 30 minutes to overnight, but longer staining times will require much longer destaining times, and more changes of destain solution. Colloidal Coomassie may require several days in the stain for optimum sensitivity and uniformity of staining. Silver stain must be timed carefully for best results. There are many silver staining protocols; most can be completed in 1.5 to 4 hours. Both copper and zinc staining require only 5 to 10 minutes. The fluorescent stains have various time requirements, usually from a few minutes to an hour at most. It is recommended that the protocols for fluorescent staining be followed carefully for best results.

What If You Need to Quantify Your Stained Protein?

The amino acid composition of the protein of interest will affect stain performance. No general rules are available, but some proteins stain better with Coomassie, for instance, and others stain better with silver. Both of these stains are adequate for relative quantitation of your protein (i.e., “The treated band is 2× denser than the untreated sample.”). It is useful to consult the literature for information on the staining characteristics of your protein of interest.
If you must obtain the absolute amount of your protein, the best standard to use is the protein of interest itself. If the protein of interest is not available in purified form to run in a separate lane in a known amount, then bovine gamma globulin gives a better standard curve than bovine serum albumin with Coomassie brilliant blue R-250 or G-250. BSA is stained much more densely with Coomassie than other proteins at the same concentration, restricting its use as a standard. We do not recommend any silver stain for quantitation, unless you are sure your protein of interest responds the same way to silver as the protein chosen as the standard.

Note also that most silver stains provide only one absorbance unit of linearity, whereas Coomassie will provide 2 to 2.5 absorbance units of linearity. Sypro Ruby is linear over 3 absorbance units. These generalizations may or may not apply to your protein of interest; the amount of linearity of a stain on a particular protein must be assessed anew for each protein.

What Causes High Background Staining?

Impure Reagents and Contaminants from Earlier Procedures

The effect of chemical impurities was discussed above. If the SDS within the PAGE gel is contaminated with C10, C14, or C16 forms of the detergent, Coomassie brilliant blue and silver may stain the background of the gel. These and other detergents, urea, carrier ampholytes, and other gel components may also be stained. They should be removed by fixation before the stain is applied.

Certain buffer and gel components can also contribute to background staining, which can be prevented if a gel is fixed before staining. Which fixative to use depends on the gel type and the stain. When using Coomassie (or colloidal Coomassie), SDS-PAGE gels should be fixed in the same solution used to prepare the stain. The several osmotic potentials that exist between the fixing solution and the buffers within the gel cause the TRIS, glycine, and SDS to leave the gel, making for a much cleaner background.

IEF gels should be fixed in 10% trichloroacetic acid, 40% MeOH, and if possible, 2.5% sulfosalicylic acid, since the latter helps remove carrier ampholytes. Immobilized pH gradient gels, IPG gels, are not usually stained with silver, but they can be stained with colloidal Coomassie. It is sometimes useful to stain the IPG strips as an aid in diagnosis of problems with the 2-D slab gels.
Will the Presence of Stain on Western-Blotted Proteins Interfere with Subsequent Hybridization or Antibody Detection Reactions?

Proteins can be detected on a blot after staining the blot with a general protein stain such as Coomassie or colloidal gold, but the interference with subsequent immunodetection will be high (Frank Witzman, 1999). The interference can be 50% or more, but this may not matter if the protein of interest is in high abundance.

Proteins which have been stained in the gel will not transfer out of the gel properly, and it is unlikely that an immuno detection procedure will be successful. It is usual to run duplicate gels or run duplicate lanes on the same gel and cut the gel in half, if you want to both stain and blot the protein of interest.

Does Ethidium Bromide Interfere with the Common Enzymatic Manipulation of Nucleic Acids?

Ethidium bromide does not usually interfere with the activities of most common DNA modifying enzymes. However, ethidium bromide has been shown to interfere with restriction endonucleases (Soslau and Pirollo, 1983; Parker et al., 1977).

STANDARDIZING YOUR GELS
What Factors Should Be Considered before Selecting a Molecular Weight Marker?

Ask yourself whether you need exact or approximate molecular weight values. If you need exact values, you must use a standard that will form thin tight bands at the same location from batch to batch. Most pre-stained standards do not form such thin, tight bands, and are good for only “ball park” molecular weight values and assessing transfer efficiencies.

You might also ask whether you will run native or denatured gels. Denatured gels, usually SDS-PAGE gels, provide exact molecular weights because of the elimination of the charge on the protein as a factor in the electrophoresis. (Negatively charged SDS coats the proteins, hiding the native charge on the proteins, and providing a constant charge to mass ratio.)

Native gels provide results which reflect the charge, size and shape of the proteins. It is not acceptable to measure molecular weight by native electrophoresis, because more than one parameter is measured during this technique. Some companies sell “molecular weight standards” for native gels, but these standards have
no scientific validity. Molecular weights can be determined for native gels by means of a Fergusson plot (Andrews, 1986). Proteins can be used to measure whether the electrophoresis is reproducible, and can provide information on the relative separation of various bands from each other. However, because more than one parameter influences the movement of the proteins in the gel, they cannot be used to measure molecular weight.

Another factor that affects the migration rate in any kind of gel is the protein’s amount and type of posttranslational modification. Proteins with significant glycosylation will run more slowly than their total molecular weight might suggest (Podulso, 1981). It is also possible to use gradient gels for molecular weight determination (Lambin and Fine, 1979; Podulso and Rodbard, 1980).

Are Double-Stranded Markers Appropriate for Sizing Large (Not Oligonucleotide) Single-Stranded DNA? If Not, Which Markers Are Recommended?

Double-stranded DNA size markers are not appropriate for sizing large single-stranded DNAs. Most labs with need of such markers obtain single-stranded DNA (usually phage DNA), calibrate it for size by sequencing it, and use that as a single-stranded DNA marker. Since the mobility of many single-stranded nucleic acids is variable, it is recommended to cross-calibrate with a second single-stranded source (e.g., a different phage).

Can a Pre-stained Standard Be Applied to Determine the Molecular Weight of an Unknown Protein?

Pre-stained protein standards usually run as broad, fuzzy bands, making them useful for approximate, but not exact, molecular weight determinations. Thus they can be used to report only approximate molecular weights (within 10,000 daltons of the molecular weight as determined by an unstained standard). The molecular weight values of most pre-stained standards vary from batch to batch because the conjugation reaction between marker protein and dye marker is not perfectly reproducible.

Some vendors now offer pre-stained recombinant proteins of known, reproducible molecular weights. The bands in these protein standards form thin, tight bands, and they can be used for accurate molecular weight determination.
How Do You Determine Molecular Weight on a Western Blot?

Use biotin-labeled molecular weight markers, and detect them with streptavidin-conjugated horseradish peroxidase or alkaline phosphatase. The streptavidin conjugate that will detect the markers is added to the solution containing the labeled secondary antibody (e.g., horseradish peroxidase or alkaline phosphatase) that will subsequently react with the sample proteins (Figure 12.5). These markers will provide precise molecular weight values.

The pre-stained recombinant proteins of known, reproducible molecular weights discussed above can also determine the molecular weights of proteins on a blot.

Some researchers will cut off the molecular weight standard lane from the blot and stain it with Coomassie or Amido Black, and then realign the stained standards with the rest of the blot once it has been processed. The problem with this approach is that the nitrocellulose can slightly shrink or swell, causing the bands to misalign. Other researchers simply feel uncomfortable about the prospect of perfectly aligning the segments after cutting, so this is not recommended.

What Are the Options for Determining pI and Molecular Weight on a 2-D Gel?

There are several ways to do this:

1. Add proteins of known (denatured) pI and MW to your sample and electrophorese the standards within the same gel. The added proteins are often difficult to detect within the
2-D spot pattern, which usually makes this method unsatisfactory. It may be appropriate for 2-D of *in vitro* translation products.

2. Use a 2-D standard comprised of proteins of known pI and MW, and run it on a separate gel, with the assumption that the gels will run identically. This is also problematic, since it is difficult to get the gels to run identically. The use of IPG strips and pre-cast slab gels helps, but drying artifacts may cause unacceptable variation between gels.

3. Measure the pH gradient of the IEF gel with a pH electrode (see below and Chapter 4, “How to Properly Use and Maintain Laboratory Equipment,”) and use a MW standard in the second dimension to determine MW.

4. Carbamylate a protein of known (denatured) pI, and add it to the sample (Tollaksen, 1981). A protein with a MW not seen in the sample should be used. The carbamylated protein will run as a series of spots starting with the spot of known pI. Each spot to the acidic side will be 0.1 pH unit more acidic than the one to the basic side. Carbamylated proteins are also commercially available.

5. If you are electrophoresing a well-characterized sample, such as *E. coli* or mouse liver, compare your pI and MW data to online databases such as those available at http://www.expasy.ch/. This is the preferred option if your sample is present in such a database. If such a database is not available for your sample, you should use 2 of the above methods.

How Do You Measure the pH Gradient of a Tube IEF Gel or an IPG Gel?

Several methods are presented here. None are very satisfactory, as there are problems with them all.

To document the pH gradient, measure the migration distance for several proteins of known pI, and create a standard curve by plotting the pI value of your marker against the R_t value. You will need to normalize your standard proteins so that you can compare gels.

Several commercial products, comprised of colored proteins of known pI, are available for native IEF. However, these standards cannot be used for 2-D gels, since native pI values differ from the pI value of the same protein under denaturing conditions. The native pI value is based on the surface charge and conformational effects of the protein. In 2-D gels all amino acid side chains are...
exposed and affect the migration of the protein in denaturing conditions, thus altering the pI.

A second approach is to directly measure the pH throughout the length of the gel (this works only with carrier ampholyte tube gels). Slice the gel into 1, 5, or 10 mm sections, and put the pieces into numbered tubes. Next, add 1.0 ml of 50 mM KCl to each tube, place them inside a vacuum dessicator without dessicant, and draw a vacuum on the tubes. Incubate overnight at room temperature, and measure the pH of the ampholyte solution, starting from the acidic end, after 24 hours. Incubation for 24 hours is recommended to ensure that equilibrium of the ampholyte concentration in the gel piece and the liquid has occurred. The potassium chloride and vacuum are required to prevent atmospheric CO2 from affecting the pH of the solutions. The potassium chloride also helps the pH electrode work more easily in solutions with low concentrations of ampholytes. The problem with this procedure is that it is difficult to cut the gel into exact, reproducibly sized sections.

As described in Chapter 4, “How to Properly Use and Maintain Laboratory Equipment,” electrodes are available that can directly measure the pH of a gel. There are two kinds: flat-bottomed electrodes, suitable for a flat strip gel, and microelectrodes, which must be inserted into the (tube) gel. Flat-bottomed electrodes usually have the reference electrode to the side, as a little piece of glass sticking out. The reference electrode must be parallel with the main electrode, at the same pH in use. The microelectrode has the reference electrode in a circular shape around the main electrode. Both types require some getting used to, but provide good results when used carefully and in a reproducible manner.

Veteran proteomics researchers identify proteins in their samples by comparison of their spot patterns to those in Web-based 2-D databases, and choose known proteins to sequence and measure by mass spectrometry. Once those proteins have been compared and identified for sure, they can be used as internal pI and MW standards. Usually constituitive proteins that do not vary in concentration are used. (Wilkins et al., 1997) Most 2-D data analysis software packages can establish a pH gradient once spots of known pI are specified.

Some groups report the use of pH paper to get a very rough idea of the pH gradient (personal communication from Bio-Rad customers), but this is not recommended because it lacks precision.

In the case of IPG strips, you may assume that if you have a pH 3 to 10 gel, that you can measure the length of the gel from end to end, and divide it up into pH units. This is valid only for a rough
idea of the pI of a protein of interest. Manufacturers’ specifications for the length of the gels ranges from ±5 to ±2 mm, and the pH gradient on the gel may also vary enough to change the location of a pH on the gel.

TROUBLESHOOTING

What Is This Band Going All the Way across a Silver-Stained Gel, between Approximately 55 and 65 kDa?

The band most likely contains skin keratin, originating from fingers, flakes of skin, or hair dander (dandruff) within the gel solutions or running buffer. This band, which may be quite broad, is usually detected only with more sensitive staining methods, such as silver. There is usually only one band and the molecular weight varies depending on the type of skin keratin. Ochs (1983) demonstrates conclusively that this band is due to skin keratin contamination.

How Can You Stop the Buffer Leaking from the Upper Chamber of a Vertical Slab Cell?

The upper chamber should be set up on a dry paper towel before the run with the upper buffer in it, and let stand for up to 10 minutes to determine if there are any leaks from the upper chamber. In some cells the leaks can be stopped by filling up the lower chamber to the same height as the liquid in the upper chamber. This eliminates the hydrostatic head causing the leak, and the run can proceed successfully. Otherwise, make sure the cell is assembled correctly, and if the problem persists, contact the cell’s manufacturer.

BIBLIOGRAPHY

APPENDIX A

PROCEDURE FOR DEGASSING ACRYLAMIDE GEL SOLUTIONS

Degas your acrylamide solution in a side-arm vacuum flask with a cork that is wider than the flask opening for 15 minutes with gentle stirring (Figure 12.6). Use at least a bench vacuum to degas (20–23 inches of mercury in most buildings); a water aspirator on the sink is not strong enough (at most 12–16 inches of mercury). A vacuum pump (>25 inches of mercury) is best. When the solution bubbles up and threatens to overflow into the side arm, release the vacuum by quickly removing the cork from the top of the flask. Then replace the cork, swirl the solution, and continue the procedure. The solution will bubble up four or five times, and then most of the air will be removed. Continue degassing for 15 minutes total. The degassing is a convenient time to weigh out 0.1 g of APS in a small weigh-boat and to test its potency as described in the text.

Figure 12.6 Vacuum flask strategy to eliminate dissolved oxygen from acrylamide solutions. Reproduced with permission from Bio-Rad Laboratories.