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Urothelium covers the inner surfaces of the renal pelvis,

ureter, bladder, and prostatic urethra. Although

morphologically similar, the urothelia in these anatomic

locations differ in their embryonic origin and lineages of

cellular differentiation, as reflected in their different

uroplakin content, expandability during micturition, and

susceptibility to chemical carcinogens. Previously thought to

be an inert tissue forming a passive barrier between the urine

and blood, urothelia have recently been shown to have a

secretory activity that actively modifies urine composition.

Urothelial cells express a number of ion channels, receptors,

and ligands, enabling them to receive and send signals and

communicate with adjoining cells and their broader

environment. The urothelial surface bears specific receptors

that not only allow uropathogenic E. coli to attach to and

invade the bladder mucosa, but also provide a route by

which the bacteria ascend through the ureters to the kidney

to cause pyelonephritis. Genetic ablation of one or more

uroplakin genes in mice causes severe retrograde

vesicoureteral reflux, hydronephrosis, and renal failure,

conditions that mirror certain human congenital diseases.

Clearly, abnormalities of the lower urinary tract can impact

the upper tract, and vice versa, through the urothelial

connection. In this review, we highlight recent advances in

the field of urothelial biology by focusing on the uroplakins, a

group of urothelium-specific and differentiation-dependent

integral membrane proteins. We discuss these proteins’

biochemistry, structure, assembly, intracellular trafficking,

and their emerging roles in urothelial biology, function,

and pathological processes. We also call attention to

important areas where greater investigative efforts are

warranted.
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Urothelium is also known as ‘transitional epithelium’ in
histology textbooks and scientific literature, largely based on
the erroneous assumption that although it appears as a
stratified epithelium, all cell layers are in direct contact with
the basement membrane, a characteristic of simple epithelia.
This notion has been contradicted, however, by electron
microscopic and immunohistochemical studies, which have
failed to show any upper urothelial layer/basement-membrane
connection but instead delineate distinct urothelial layers. In
rodents, for example, there are at least three discernable cell
layers (basal, intermediate, and superficial/umbrella),
whereas in higher mammals such as cattle and humans more
than one intermediate layer is present. Thus, the term
‘transitional epithelium’ is evidently a misnomer and should
be replaced by ‘urothelium’, as has been proposed earlier.1

Similarly, the term ‘transitional cell carcinoma’ should be
replaced by ‘urothelial carcinoma’.2

Urothelium is one of the slowest cycling epithelia in the
body with a turnover rate of B200 days and a tritium-
thymidine labeling index of B0.01%.3,4 Such a remarkable
durability is functionally desirable as the urothelium needs to
act as a constant permeability barrier to protect the blood
from toxic urinary substances. In fact, the urothelium is
among the most effective barriers of any biomembrane, with
a transepithelial electric resistance of up to 75,000O/cm2,
making it a far more effective barrier than the epidermis.5,6

Urothelium also needs to remain highly flexible throughout
the micturition cycle so that it can accommodate significant
changes in surface area.4,7,8 How does urothelium achieve a
high degree of impermeability and flexibility all at once? The
answer seems to rest with a membrane specialization called
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the urothelial plaque elaborated by the urothelium during an
advanced stage of differentiation.

Urothelial plaques are rigid-looking, concave-shaped
biomembrane structures that are visible only by electron
microscopy. On cross-sections, the plaques (0.3–1mm in
diameter) exhibit outer membrane leaflets twice as thick as
the inner ones, hence the name asymmetric unit membrane
(see Porter and Bonneville9; Hicks10; Koss11; Figure 1a, inset).
These plaques occupy B90% of the urothelial apical surface,
interrupted by narrow ‘hinge’ regions (see Porter et al.15;
Figure 1a and b). Negative staining and quick-freeze/deep-
etch of the urothelial plaques revealed hexagonally arranged,
16-nm protein particles.12,16–20 Not only are the plaques
found on the luminal surface, they are also present in great

abundance in fusiform vesicles in the cytoplasm of the
superficial umbrella cells (Figure 1a and c). These cytoplas-
mic vesicles were thought to travel reversibly between the
luminal surface and cytoplasm to adjust the apical surface
area during the urothelial contraction/extension cycle,7,8,10,15

although whether the movement is uni- or bi-directional
remains an open question.21,22 Despite the abundance and
the striking structural features of these urothelial plaques,
relatively little was known about their protein composition
and their exact role(s) in urothelial physiology and diseases.
In the following sections, we will review the identification
and characterization of the protein components of the
urothelial plaques and their biological functions and
disease implications. The recently discovered secretory23
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Figure 1 | Structure, assembly, and trafficking of uroplakins. (a) Transmission electron micrograph of a mouse urothelial superficial
umbrella cell. Note dense clusters of fusiform vesicles (flattened disks), which most likely mature from the spherical discoidal vesicles deep
in the cytoplasm. Inset shows a higher magnification view of a rigid-looking plaque showing asymmetric unit membrane. (b) Quick-freeze
deep-etch image of the apical surface of a mouse umbrella cell showing urothelial plaques (P) containing hexagonal arrays of 16-nm
particles interconnected by particle-free hinge (H) areas.12 (c) Schematic diagram illustrating the vesicular traffic in umbrella cells. Uroplakin
heterodimers assembled in the ER and modified in the Golgi apparatus accumulate in small vesicles budding off the trans-Golgi network
(TGN). They form discoidal vesicles (DVs) where an assembly of crystalline arrays continues. The mature fusiform vesicles (FVs) traverse a
meshwork of intermediate filaments (IF; see Veranic and Jezernik13) and fuse with the apical plasma membrane in a regulated fashion
mediated by Rab27b. Degradation of UPs requires the formation of endocytic vesicles and/or modified FVs that form sorting endosomes
(SE) and multivesicular bodies (MVB), which fuse with mature lysosomes (LYS). (d) A model depicting the assembly of the four major
uroplakins (UPIa, Ib, II, and IIIa) into 2D crystals of urothelial particles. Stages A and B: The four uroplakins acquire high-mannose glycans in
the ER and form two heterodimers (UPIa/II and UPIb/IIIa), which undergo major conformational changes. Symbols: the small, horizontal
arrows on UPII mark the furin cleavage site at the end of the prosequence; the open and closed circles represent high-mannose and
complex glycans, respectively. In normal urothelium (pathway on the right), the glycans on two of the three N-glycosylation sites on the
prosequence of UPII become complex glycans in the Golgi apparatus (stage C2), and the furin-mediated cleavage/removal of the
prosequence in the TGN (stage D2) then triggers oligomerization to form a 16-nm particle. In cultured urothelial cells (pathway on the left),
the differentiation-dependent glycosylation of pro-UPII does not occur, thus hampering the formation of the uroplakin heterotetramer and
the 16-nm particle, thus no asymmetric unit membrane assembly (Adapted from Hu et al.14 with permission).
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and neuronal properties of the urothelium and their possible
roles in bladder functions have been detailed in excellent
reviews24,25 and will not be discussed here.

UROPLAKINS ARE THE PROTEIN BUILDING BLOCKS OF
UROTHELIAL PLAQUES

Although urothelial plaques are a hallmark of urothelial
differentiation, earlier attempts to define their protein
composition were hampered by difficulties in their purifica-
tion and inability to generate antibodies to any plaque-
associated proteins.26–28 Using sucrose gradient centrifuga-
tion coupled with detergent wash, we succeeded in isolating
milligram quantities of highly purified bovine urothelial
plaques.29 These plaques exhibited typical 2D crystals of
hexagonally packed 16-nm particles and contained four
major proteins of 15, 27, 28, and 47 kDa. By generating
monospecific antibodies and EM-localizing each of these
proteins to the urothelial plaques in situ, we named these
novel integral membrane proteins uroplakins Ia (27 kDa), Ib
(28 kDa), II (15 kDa), and IIIa (47 kDa).30–32 Subsequent
studies demonstrated that the urothelial plaques isolated
from a wide range of species including mouse and human
were ultrastructurally identical, and all contained the four
uroplakins, demonstrating their high degree of conservation
during mammalian evolution.33,34 The onset of uroplakin
expression during urothelial differentiation varies, however,
from species to species. In higher mammals such as cattle and
human that possess a thick urothelium, uroplakins are
detected primarily in the superficial umbrella cells, whereas
in rodents that possess a thin 3–4 cell-layered urothelium they
are found in all urothelial layers including the basal cells (see
Wu et al.; Yu et al.; Mo et al.; Zhang et al.29,35–37; also see the
section on UPII promoter below). Such a species and/or
urothelial thickness-dependent expression of uroplakins may
be related to the expression patterns of certain transcription
factors in different urothelial cell layers.38

Among the uroplakins (UPs), UPIa, and UPIb share
B40% of their amino acid sequence, and both have four
transmembrane domains (TMD) with a minor (first) and a
major (second) hydrophilic domain extending extracellu-
larly.32 These two UPs belong to the tetraspanin family
comprised of many leukocyte differentiation antigens such as
CD9, CD27, CD63, CD81, and CD83.39,40 UPII possesses an
N-terminal signal peptide followed by a heavily glycosylated
pro-peptide of 59 amino acids ending in an RGRR consensus
substrate for furin, a trans-Golgi network-associated proces-
sing enzyme. The mature UPII is not glycosylated and has
only a single TMD located close to its C terminus, with very
little cytoplasmic domain.31 Similar to UPII, UPIIIa has a
single TMD, which divides the protein into a long (189
residue) N-terminal luminal domain and a C-terminal (52
residue) cytoplasmic domain.30 The N-terminal luminal
domain is heavily glycosylated with 20-kDa equivalents of
complex-type carbohydrates, whereas the cytoplasmic do-
main harbors several potential serine/threonine and tyrosine
phosphorylation sites. Interestingly, UPIIIa shares a stretch of

about 12 amino acid residues, located on the N-terminal side
of the single TMD, with a similarly located domain in UPII
suggesting that these two UPs are related.30,31 Because UPIIIa
is the only UP that possesses a significant cytoplasmic
domain, this raises the interesting possibility that UPIIIa may
be involved in anchoring the urothelial plaques to the
underlying cytoskeleton41 and that its C-terminal phosphor-
ylation may be involved in regulating such an association.30 It
is notable that, overall, the mass of extracellular domains of
UPs greatly exceeds that of their cytoplasmic domains (Figure
1d). Such an asymmetric mass distribution of UPs across the
lipid bilayer explains the TEM observation that the outer
leaflets of urothelial plaques are almost twice as thick as the
inner ones.30–32

Three lines of evidence suggest that the four major UPs
form two specific pairs. First, treatment of purified bovine
urothelial plaques with bifunctional crosslinking reagents led
to the crosslinking of UPIa and UPIb, the two tetraspanin-
related uroplakins, to UPII and UPIIIa, respectively, suggest-
ing the existence of UPIa/II and UPIb/IIIa heterodimers.42

Second, ion exchange chromatography co-purified UPIa with
II and UPIb with IIIa.43 Third, transfection of 293T cells with
single uroplakin cDNAs resulted in UPs being trapped in the
ER (except UPIb which can exit by itself). In contrast, double
transfection of UPIa/II or UPIb/IIIa enabled the hetero-
dimers to reach the cell surface.44 These results clearly
indicate that the formation of UPIa/II or UPIb/IIIa hetero-
dimers is the first step of UP assembly that is required for ER-
exit (see Hu et al.14; Tu et al. 44; Figure 1d).

FORMATION OF 2D CRYSTALS BY UPs PROVIDES
STRUCTURAL INSIGHTS INTO THESE PROTEINS

The existence of UPs in naturally occurring 2D crystals of the
urothelial plaques has offered unique opportunities for in-
depth structural studies. Quick-freeze deep-etch,12 negative
staining coupled with image processing,17–20 cryo-EM,45–47

and atomic force microscopy48 resolved each 16-nm particle
into six inner and six outer subdomains forming two
concentric rings. One inner and one outer subdomain
interconnect to form a subunit – one sixth of the hexagonal
particle. Cryo-EM 3D reconstructions revealed that each
subdomain contains a total of 5 transmembrane helices,
corresponding to one tetraspanin and a single-pass uroplakin
(see Min et al.46,47; Figure 2). EM localization using the E. coli
FimH adhesin, which specifically binds to UPIa, indicates
that the UPIa/II pair occupies the inner subdomain, whereas
the UP Ib/III pair occupies the outer subdomain (see Min
et al.48; Figures 2 and 3a and b). The four transmembrane
helices of UPIa and UPIb are tightly packed into bundles
aligned with the extracellular domains, giving these two UPs
an overall cylindrical shape. The single-pass UPII and UPIIIa
adopt an inverted ‘L’-shape, anchored by its transmembrane
helix packed against the four transmembrane helices of their
partner tetraspanin UPs, thus forming a five-helix bundle
within each subdomain. The long arm of the inverted ‘L’
continues up against the cylindrical UP tetraspanins.
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The short arm of the ‘L’ extends to join the short arm of the
other inverted ‘L’ from the paired subdomain within the same
subunit, thus forming a ‘joint’.46 Interestingly, the joint

provides the only contact between the two subdomains
within a subunit, while the two tetraspanins, UPIa and UPIb,
do not appear to have any direct contact.46 This type of loose
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Figure 2 | Structure of the 16-nm uroplakin particle. (a) The side view of the cryo-EM structure of the 16-nm mouse uroplakin particle at
6 Å resolution. The vertical dimension of the particle can be divided into four regions: the joint (JT), the trunk (TK), the transmembrane
region (TM), and the cytoplasmic region (CT). (b) Electron densities of the transmembrane region of an inner subdomain of the particle,
showing a five-helix bundle formed by the transmembrane helices from the tetraspanin UPIa (helices 1–4) and the single transmembrane
domain from UPII (helix 10). (c) Positions of the transmembrane helices in the 16-nm particle (yellow). (d) A model showing that the inner
and outer subdomains of the particle are formed by the UPIa/II and UPIb/IIIa pair, respectively (see text). Panels a and b are reprinted with
permission from Min et al.46.
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uropathogenic E. coli to UPIa. MW: molecular weight standards. (b) Localization of the FimH binding site to the six inner subdomains of the
mouse 16-nm uroplakin particle, based on the difference map of the mouse urothelial plaques that have been negatively stained with and
without a saturating amount of FimH. (c) Schematic model of ascending UTI in mice by uropathogenic E. coli. E. coli expressing the type 1
fimbriae can attach to the uroplakin receptor and cause bladder infection (cystitis). Although these type-1 positive bacteria can bind to the
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connection between the two subdomains within a subunit
suggests a flexible interaction between the inner and outer
subdomains, thus providing a basis for possible structural
changes of UPs upon binding to the E. coli FimH adhesin.

ASSEMBLY OF UPs INTO 2D CRYSTALS IS A DYNAMIC AND
HIGHLY REGULATED PROCESS

A crucial step in elucidating the biological functions of
urothelial plaques is to understand how UPs are assembled
into higher order protein complexes and how the resultant
urothelial plaques are delivered to the urothelial apical
surface. Transfection studies showed that, immediately after
their synthesis in the ER, the four uroplakins acquire high-
mannose glycans and form two heterodimers (UPIa/II and
UPIb/IIIa).44 Recent data suggest a model in which major
conformational changes occur during UP dimerization
leading to a more stable protein complex that can exit from
the ER.14 The glycans on two of the three N-glycosylation
sites of the pro-peptide of UPII become complex glycans in
the Golgi apparatus, causing conformational changes in pro-
UPII and its partner UPIa and thereby allowing hetero-
tetramer formation (see Hu et al.14,50; Figure 1d). Furin-
mediated removal of the pro-peptide in the TGN then
triggers oligomerization to form a 16-nm particle in which
UPIa/II and UPIb/IIIa are associated with the inner and outer
subdomains, respectively,48 and to later form 2D crystals
(Figure 1d). Interestingly, in cultured bovine urothelial cells,
the differentiation-dependent glycosylation of pro-UPII does
not occur, thus hampering the formation of the UP
heterotetramer and the 16-nm particle.44,51

While UPII and UPIIIa are transported to the plasma
membrane only after heterodimerization with UPIa and
UPIb, respectively, UPIb when expressed alone can exit the
ER and move to the plasma membrane. In contrast, the
structurally closely related UPIa by itself remains trapped in
this compartment.44,52 This may explain why UPIb is the only
UP that is expressed by itself in tissues other than the
urothelium, namely the cornea, conjunctiva, and possibly the
lung.53,54 The finding that UPIb can exit from the ER without
forming a heterodimeric complex with UPIIIa is also
consistent with the results from UPIIIa-knockout mice where
UPIb can be detected at the urothelial cell surface.55

The identification of specific UPIb domains that are
required for this tetraspanin to exit the ER was greatly
facilitated by swapping UPIb domains with its closely related
tetraspanin UPIa. As it turns out, the four TMDs of UPIb do
not simply provide hydrophobic anchors; they contain
sequence and structural information that affects intra-TMD
interactions, which are critical for the transport of UPIb from
the ER to the Golgi apparatus.52 Mutations in such TMDs
cause UPIb to aggregate, perhaps due to interactions with
chaperone-like proteins that recognize improperly assembled
TMDs resulting in their retention in the ER.56,57 However,
deletion of the N-linked oligosaccharide from UPIb or
elimination of the disulfide bridges does not result in the ER-
retention of UPIb. Therefore, these two post-translational

modifications are apparently not essential for the proper
folding of the large loop of UPIb.52 This is in striking contrast
to studies on other tetraspanins such as CD81 and CD82,
which after reduction of their disulfide bridges, can no longer
exit from the ER.58

How are pre-assembled crystalline arrays of UPs delivered
to the urothelial apical surface? We have attempted to address
this question by investigating the possible role of Rab
proteins. Using RT-PCR, we identified in urothelial cells 12
Rab or Rab-related proteins: Rab4, Rab5, Rab8, Rab11,
Rab13, Rab15, Rab27b, Rab28, Rab32, RhoA, RhoC, and
Ras1.59 Although most Rabs were broadly distributed,
Rab27b was exceptionally enriched in urothelium, represent-
ing as much as 0.1% of the total urothelial proteins.
Furthermore, on Western blots, only Rab27b, but not its
isoform Rb27a, was detected in urothelium.59 The abundance
of Rab27b in urothelium and its differentiation-dependent
co-expression with the UPs raise the interesting possibility
that the expression of Rab27b and the formation of UP-
containing fusiform vesicles are highly coordinated, and that
Rab27b may play a role in the delivery of urothelial plaques
to the plasma membrane (see for example, Tiwari et al.60).
Consistent with this idea, we showed through immuno-EM
that Rab27b was associated with the UP-containing fusiform
vesicles.59 These results indicate that Rab27b is involved in
targeting UP-containing fusiform vesicles to the plasma
membrane of urothelial umbrella cells (Figure 1c). Recent
results indicate the involvement of an additional Rab protein,
Rab11a, in the exocytosis of urothelial plaques.61

UROTHELIA OF DIFFERENT ANATOMIC LOCATIONS
REPRESENT DIFFERENT CELL LINEAGES

Although the term ‘urothelium’ is ordinarily used to describe
the epithelial lining of both upper and lower urinary tracts,
recent data indicate that urothelia at different anatomical
sites are ultrastructurally and biochemically different due to
intrinsic divergence acquired during development.62 For
instance, ureteral urothelium contains fewer cytoplasmic
fusiform vesicles and less uroplakin proteins per total cellular
proteins than does the bladder urothelium.62–64 Importantly,
this difference in uroplakin content persists even after the
bovine bladder and ureteral urothelial cells have been serially
subcultured under identical cell culture conditions using
lethally irradiated 3T3 cells as a feeder layer. Moreover, such
cultured bovine bladder urothelial cells exhibit a higher
growth rate than the ureteral urothelial cells. These results
indicate that the observed phenotypic differences cannot be
due to extrinsic regulation.65–68 Feeding vitamin A-deficient
diet to mice induces bladder urothelial keratinization
(bladder metaplasia) that originates not from the bladder
dome but from the bladder neck/proximal urethra (see Liang
et al.62; Figure 4a). Combined with the fact that renal pelvis/
ureteral urothelium is mesoderm-derived, whereas the
bladder/urethral urothelium is endoderm-derived,69,70 these
observations suggest that urothelium consists of at least three
cell lineages, that is, (i) renal pelvis/ureter, (ii) bladder and
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(iii) bladder neck/proximal urethra.62 Therefore, to use the
general term ‘urothelium’ without specifying its anatomic
location can be confusing and misleading. The heterogeneity
of urothelium has implications about the cellular basis of
urothelial metaplasia (Figure 4b–f), and raises questions
about the common practice of using human ureteral
urothelium, which is readily available from surgical speci-
mens, as a surrogate for adult human bladder urothelium,
which is more difficult to obtain and to grow in culture.
Specifically, autologous bladder urothelial cells provide an
ideal source for bladder reconstruction.71 Ureteral urothelial
cells may be used as a substitute for bladder urothelial cells,
although these two cell types may have different functional
and biomechanical properties.72,73 Finally, urothelia at
different locations appear to respond differently to various

carcinogens. Although experimental carcinogens like N-
butyl-N-(4-hydroxybutyl)nitrosamine or N-nitrosomethylur-
ea cause primarily urothelial carcinomas of the bladder,74

aristolochic acid, a mycotoxin contaminant in wheat and a
component in certain Chinese herbal products, induces
urothelial carcinomas of only the renal pelvis and the upper
ureter.75,76 It will be very interesting to determine whether
intrinsic properties underlying the urothelial heterogeneity
are responsible for the varied susceptibilities of the urothelia
of different anatomic sites to different carcinogens.

GENE INACTIVATION REVEALS IMPORTANT PHYSIOLOGICAL
FUNCTIONS OF UPs

A strategy was taken to ablate mouse genes encoding UPII or
UPIIIa because inactivating these two UPs should abolish the
formation of UPIa/II and UPIb/III pairs, respectively.55,77

Knockout of the UPIIIa gene led to the loss of about 70–80%
of the urothelial plaques of the urothelial apical surface.55

The retention of some plaques in the UPIIIa knockouts may
be due to the presence of a minor UPIII isoform, UPIIIb,
which was identified in a bovine urothelial subtraction cDNA
library.78 However, ablation of the UPII gene, which does not
appear to have an isoform, led to the complete loss of
urothelial plaques.77 These results establish UPs as the
integral protein subunits of the urothelial plaques.
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Figure 4 | Models of squamous metaplasia of the mouse
urothelium induced by vitamin A deficiency. (a) Schematic
diagram showing gradual expansion of the vitamin A deficiency-
induced squamous metaplasia from the proximal urethra (PU) and
the trigone (TG) region to the rest of the bladder (B). UR, ureter; K,
kidney. (b–f) Models for various cellular mechanisms of bladder
metaplasia. (b) The transdifferentiation model: A terminally
differentiated cell (DC; square) can directly transform into a
different kind of terminally differentiated cell (diamond). (c) The
dedifferentiation-and-redifferentiation model: A terminally
differentiated cell can revert back to an undifferentiated or stem
cell (SC), which can then differentiate along a different pathway
yielding a distinct phenotype in response to environmental and/
or mesenchymal changes (beige). (d) The pluripotent stem cell
model: Under normal conditions, the pluripotent stem cells give
rise to terminal differentiated cells of a particular phenotype;
mesenchymal changes may induce such a stem cell to undergo an
alternative pathway of differentiation. (e) The selective expansion
model. The tissue contains two separate populations of stem cells:
one of them (yellow) normally gives rise to the main phenotype,
whereas the other lies dormant. Mesenchymal and/or
environmental changes, including alterations of the stem cell
niche, suppress the growth and differentiation of the originally
dominant stem cell while activating the originally dormant stem
cell (red) that now gives rise to a different phenotype. (f) The
expansion and replacement model. The tissue contains two
separate cell lineages that occupy different domains separated by
well-defined boundaries. Mesenchymal and/or environmental
changes such as vitamin A deficiency favor the expansion of one
cell lineage over another, thus allowing one cell type to expand
and invade another cell lineage’s domain. This last model can best
explain the existing data on urothelial keratinizing squamous
metaplasia that is induced by vitamin A deficiency. (d–f) The
parallel red bars denote that the process/pathway is blocked.
SC, stem cell (adapted from Liang et al.62).
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Physiological measurements of bladder mucosa using
modified Ussing chambers showed that the permeability of
the UPII- or UPIIIa-deficient mouse urothelium to 14C-urea
and 3H-water was significantly higher than that of the wild-
type mice, suggesting that uroplakin plaques contribute to
the urothelial permeability barrier function.55,77,79 It is likely
that under normal conditions the crystalline network of UPs
imposes structural constraints on the lipid molecules,
limiting their ability to undergo lateral diffusion and thus
enhancing the barrier function.6,47,79 Together, these results
indicate that the UP-containing urothelial plaques, in
conjunction with the lipids and the tight junctions, play an
important part in the urothelial permeability barrier func-
tion.5,51,80 It is worth noting that increased urothelial
permeability is a common manifestation in interstitial
cystitis, an excruciatingly painful bladder syndrome.81–83

Whether defects of UPs and their associated proteins,
possibly including the ‘glycocalyx’ components,82,84 are
involved in the pathogenesis of this important disease
remains to be seen.

Other prominent features in mice lacking UPII, UPIIIa or
both are severe vesicoureteral reflux (VUR), hydronephrosis
and impaired renal function.55,77 The retrograde overflow of
urine into the upper tract appeared to result from enlarged
ureteral orifices in the knockout mice.55 In an attempt to
determine whether UP defects might be involved in human
VUR, we examined a panel of 76 well-documented VUR
patients and 90 race-matched controls for single nucleotide
polymorphisms of all four major UPs. Most single nucleotide
polymorphisms found were not significantly associated with
VUR, although several single nucleotide polymorphisms were
marginally associated.85 The fact that no truncation or frame
shift mutations were found in any of the VUR patients
coupled with our recent finding that some breeding pairs of
UPIIIa and UPII knockout mice yielded litters that die
neonatally,55,77 raises the intriguing possibility that major UP
mutations are not tolerated in humans. By analyzing a few
single nucleotide polymorphisms of only the UPIIIa gene,
others have come to a similar conclusion.86,87 More recent
data indicate that certain UPIIIa mutations can be correlated
with human renal hypodysplasia and adysplasia, which can
lead to renal failure.88,89

UPs PLAY A ROLE IN E. coli ADHESION, INVASION, AND UPPER
TRACT DISSEMINATION

The first and essential step for uropathogenic E. coli (UPEC),
which causes B85% of all urinary tract infections, to
colonize the bladder is for the bacteria to adhere to the
urothelial surface by specific interactions between UPEC’s
FimH adhesin and the urothelial surface’s mannosylated
glycoprotein(s).90–95 However, despite much conjecture, the
identity of such urothelial receptors had long been elusive.
We tested whether some of the glycosylated UPs, as the
principal protein components that account for over 90% of
the urothelial surface, can serve as the urothelial receptor(s)
for type 1-fimbriated E. coli. We discovered that UPEC strains

expressing the type 1-fimbriae, but not those expressing P-
fimbriae or no fimbriae, bound to purified urothelial plaques
in large numbers, in a saturable and species-conserved
manner.96 The binding was completely abolished by pre-
incubating type 1-fimbriated E. coli with D-mannose. Gel-
overlay assay revealed that the type 1-fimbriated E. coli bound
specifically to protein bands in the UPIa/Ib region, without
binding to UPII and III. The fact that the highly glycosylated
UPIIIa did not interact with type 1-fimbriae suggested that
only UPIa/Ib contained unmodified, terminal mannose
moieties that represent the structural fit for the FimH-
binding pocket. Indeed, endo-H treatment, which removes
the high mannose residues, or the addition of D-mannose,
completely abolished the E. coli–UPIa/Ib binding. These
results provided the first experimental evidence indicating
that the urothelial surface contains a principal mannosylated
glycoprotein (UPIa/Ib) that is capable of interacting with
type 1-fimbriated E. coli.96

This conclusion was further refined using mouse UPs and
recombinant FimH/FimC as a probe. Unlike bovine UPIa
and UPIb, which were not well resolved on SDS-PAGE
because of their close molecular masses, the mouse counter-
parts were well separated, allowing the conclusive identifica-
tion of mouse UPIa as the sole binder for FimH (see Zhou
et al.49; Figure 3a). Additional studies of the glycomoieties of
UPIa and UPIb established that only UPIa contains high
mannose glycans that are capable of interacting with FimH,
making it the sole urothelial receptor for FimH in vitro.49,97

Glycopeptide analysis also established Asn169 of UPIa as the
site that bears the Man(6)GlcNAc(2). Importantly, this glyco-
moiety is conserved in UPIa isolated from mouse, bovine,
and human bladder urothelia.97

Mounting evidence suggests that the interaction of UPECs
with the urothelial surface is critical not only for adhesion,
but also for triggering a cascade of events that lead to
bacterial invasion into the urothelial cells.98,99 UPECs appear
to exploit the membrane trafficking machinery that normally
exists in the urothelial cells. Abraham and co-workers
recently showed that UPECs initially reside in the Rab27b-
positive, UP-containing, fusiform vesicles.100 Once inside the
urothelial cells, UPECs are insulated from the attack of host
immunity and are resistant to antibiotic treatment. Hultgren
and co-workers showed that the intracellular UPECs can not
only survive, but also proliferate, forming so-called intracel-
lular bacterial communities.101,102 Some of these intracellular
bacterial communities can either stay dormant forming
‘quiescent intracellular reservoirs’ or break out of the
urothelial cells to seed a new round of infection. Recent
evidence indicates that intracellular bacterial community
formation can occur in many mouse strains and is
reproducible with different clinical E. coli isolates from
human UTIs.103 More importantly, desquamated urothelial
cells from UTI patients harbor intracellular bacterial com-
munities.104 The discovery of UPECs as intracellular patho-
gens is highly significant because it reveals a potentially
important mechanism for recurrent UTIs. Thus, instead of
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re-inoculation of the urinary system with E. coli from the
peri-urethral region, UPECs causing recurrent UTIs could be
derived from those inhabiting the urothelial cells between
active infections. Clearly, this concept, if further explored,
can have a major impact on devising novel treatment
strategies for recurrent UTIs.

In addition to its role in mediating urothelial adhesion
and invasion within the confines of the bladder, the binding
of UPECs to UPIa may also facilitate the ascent of the
bacteria into the kidney to cause upper tract infections
(Figure 3c). This scenario is based on the fact that UPIa is
also present on the surfaces of the ureteral and renal pelvic
urothelia.62,64,85 The interactions of type 1-fimbriae with
UPIa in these anatomic locations may help the bacteria resist
the urine flow and enable them to migrate upwards (see Wu
et al.96; Figure 3c), with the help of bacterial motility
apparatus such as flagella.105 Most UPECs that cause
pyelonephritis express both type 1 and P fimbriae.106

Although type 1 fimbriae are crucial for cystitis, P fimbriae
seem dispensable in the lower urinary tract, perhaps due to
the lack of specific receptors for P fimbriae on the urothelial
cells.107–109 Once attaching to the renal papillary epithelium
and invading into the kidney parenchyma where nutrients are
more abundant, the expression of type 1 fimbriae ceases due
to a transcriptionally controlled process called ‘phase
variation’.110 There, P fimbriae can bind to the globo-series
of the glycolipids expressed by the renal tubular cells.111–113

Epigenetic control of P fimbrial expression can also suppress
type 1 fimbrial expression through cross-talk that is not yet
completely understood.114 Taken together, the discrete
uroplakin/glycolipid receptor expression at different ana-
tomic locations within the urinary tract, as depicted in Figure
3c, can explain the ability of UPECs to spread from lower to
upper tract as well as the highly characteristic fimbria
expression patterns of the UPEC strain isolates from cystitis
and pyelonephritis patients (Figure 3c).

UPs ARE USEFUL MARKERS FOR DIAGNOSIS, DETECTION, AND
PROGNOSTIC PREDICTION OF UROTHELIAL CARCINOMAS

As discussed in the preceding sections, UPs are expressed
abundantly by the normal urothelium, but are undetectable
in non-urothelial tissues in humans. This urothelium-
specificity is by and large maintained after urothelial
transformation, as UPs are readily detected by immunohis-
tochemistry in urothelial carcinomas, but not in non-
urothelial tumors.115–117 The detection rate in urothelial
carcinomas has been fairly consistent among different
cohorts, ranging from 50 to 60%. Somewhat surprisingly,
UP expression is not strictly correlative with low pathological
grade, despite their being the terminal differentiation
products of normal urothelium.118,119 About half of the
muscle-invasive urothelial carcinomas and lymph node
metastases retain UPs. The clinico-pathological implications
of UP detection are manifold. First, although a lack of UP
expression does not rule out a urothelial carcinoma, positive
identification of UPs is strongly indicative of a carcinoma of

urothelial origin. UPs can therefore be of significant value,
particularly when combined with other urothelium-restricted
markers, such as CK20, in the differential diagnosis of poorly
differentiated pelvic carcinomas whose sites of origin are in
question.115,118,120–124 Second, UP detection by RT-PCR is
more sensitive than histopathology for detecting local tissue
and lymph node spread of urothelial carcinoma cells. Copp
et al.125 observed that, among the pathologically node-
negative patients, 33% turned out to be node-positive upon
UPII-based RT-PCR and in 91% of these PCR-positive cases
the urothelial carcinomas recurred. Thus, UP identification
by RT-PCR appears to be an excellent tool for aiding
pathologists to detect lymph node metastasis. Third, detec-
tion of UP mRNAs in the circulation by RT-PCR could be an
indication of micro-metastastic spread of urothelial carcino-
mas into the bloodstream.126–130 In extending this concept,
the UP status in the peripheral blood could be used to
monitor the efficacy of chemotherapeutic regimens, although
prospective studies establishing this utility have yet to be
carried out. Overall, challenges remain with RT-PCR
regarding its sensitivity and specificity. Nested PCR and
increased cycles both improved the sensitivity, whereas
inevitably compromising the specificity. Genomic DNA
contamination of the RNA samples, a universal problem
associated with the use of commercial kits for RNA isolation,
can lead to false positive results, although digestion of DNA
in the RNA samples and using PCR primers on separate
exons can alleviate some of these problems. Like other tissue-
specific markers, it requires refinement and standardization
before the RT-PCR detection of UPs can be employed reliably
in a clinical setting. Finally, we have recently shown by using
immunohistochemistry of arrayed human urothelial carci-
nomas that the absence of UPs expression was significantly
associated with advanced pathologic stage, lymph node
metastases, disease recurrence and bladder cancer-specific
mortality in univariate analyses.119 The UP status is
independent of cell cycle regulators p53, pRb, p27, and
cyclin D1, and can therefore be a useful adjunct marker to
predict the prognosis of patients with advanced urothelial
carcinomas.

MOUSE UPII PROMOTER PROVIDES AN IN VIVO PLATFORM
FOR STUDYING BLADDER TUMORIGENESIS

A major by-product from characterizing UPs was the
successful isolation of the mouse UPII promoter.131 Although
this promoter functions both in bladder and ureteral
urothelia, it apparently is much more active in the former
so that it has become an excellent tool for driving bladder-
specific gene expression and interrogating the divergent
molecular pathways of bladder tumorigenesis. This trans-
genic approach would not have been feasible, had the UPII
promoter been active only in terminally differentiated
urothelial umbrella cells, which would be highly refractory
to oncogenic transformation. Fortunately, unlike the human
urothelium, UP expression in mouse urothelium has a much
earlier onset, beginning in the basal layer.36 The ability to
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drive gene expression even in the urothelial basal layer is an
important requirement for tumorigenesis, because this layer
is where the stem cells most likely reside and oncogenic
transformation originates.

Using the mouse UPII promoter to express activated
oncogenes and/or inactivate specific tumor suppressor genes
in the urothelium, we have systematically evaluated whether
specific molecular defects are capable of driving bladder
tumorigenesis along divergent phenotypic pathways (Figure
5a and b). We discovered that activation of the ras pathway,
given sufficient gene dosage, induces exclusively low-grade,

non-invasive superficial papillary bladder tumors (see Mo
et al.132; Figure 5b). Molecularly, the over-activation of Akt
and Stat3/5 and the functional inactivation of PTEN by
C-terminal hyper-phosphorylation seem crucial for trigger-
ing the nodular urothelial hyperplasia and low-grade
papillary bladder tumors (see Mo et al.132; Figure 5c). The
onset and time course of these lesions are, however, not
affected by the concurrent deficiency of p16Ink4a and p19Arf
– an event found to synergize with ras activation in a wide
range of tissues.133–135 These results provide compelling
experimental evidence indicating that deficiency of the
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Figure 5 | Divergent molecular pathways of urothelial tumorigenesis. Transgenic mouse models recapitulate the two main phenotypes
of urothelial carcinomas. Whereas urothelial expression of SV40 large T antigen elicits exclusively high-grade, flat urothelial lesions (a)
bearing strong resemblance to carcinoma in situ of the human counterparts, urothelial expression of activated Ha-ras induces exclusively
low-grade, non-invasive superficial papillary urothelial tumors (b). (c) Dosage-dependence of ras activation in triggering urothelial
tumorigenesis. Although low-level ras activation activates the MAPK pathway resulting in urothelial hyperplasia, it is insufficient to induce
tumorigenesis. Hyperactivation of ras can, however, activate the PI3K/AKT and STAT3/5 pathways, leading to nodular urothelial hyperplasia
and low-grade, superficial papillary tumors. The activation of these two pathways may also be facilitated by the functional inactivation of
PTEN through its C-terminal hyper-phosphorylation. Fibroblast growth factor receptor 3, whose mutations occur in up to 80% of the low-
grade, superficial papillary tumors in humans, may trigger this urothelial tumor variant through similar signal mechanisms (adapted from
Mo et al.132).
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INK4a gene, long thought to be a critical event in urothelial
tumor initiation,136 is unnecessary for urothelial tumor
initiation; and that hyper-activation of ras per se is sufficient
to trigger urothelial tumors. The results obtained in mice are
highly relevant to humans because ras activation through
point mutations and overexpression occurs in 30 and 50%,
respectively, of the human low-grade, superficial papillary
bladder tumors.137,138 Interestingly, mutations of fibroblast
growth factor receptor 3, which can activate the ras signaling
pathways, are found in up to 70% of these papillary
tumors.139–141 Given the fact that ras and fibroblast growth
factor receptor 3 mutations are almost always mutually
exclusive,142 perhaps reflecting the fact that they function in
the same signaling pathway, there is strong reason to believe
that ras pathway activation, through ras mutation/over-
expression or fibroblast growth factor receptor 3 mutation/
overexpression, occurs in an overwhelming majority of the
low-grade, superficial papillary bladder tumors in humans
(see Mo et al.132; Wu138; Figure 5c). Finally, patients with
Costello syndrome, a genetic disease caused by germline
mutations in the Ha-ras gene, frequently develop low-grade
papillary bladder tumors,143 further supporting the relevance
of ras pathway activation in this type of bladder tumors.

Contrary to the Ha-ras mutation, which consistently
induces low-grade papillary bladder tumors, urothelial
expression of a Simian virus 40 large T antigen (SV40T)
elicited exclusively high-grade, flat urothelial carcinomas that
strongly resembled carcinoma in situ in humans (see Zhang
et al.37; Figure 5a). Over time, these carcinoma in situ-like
lesions evolve to high-grade papillary tumors that are
occasionally muscle-invasive and metastatic to lymph node,
liver, and lungs.144 In support of our findings, Sandgren and
co-workers showed by using a keratin 5 promoter to drive the
SV40T expression in urothelium and other epithelial tissues,
that bladder-invasive tumors were a consistent finding.145

Together, these results suggest that SV40T-mediated func-
tional inactivation of the p53 and Rb tumor suppressors play
a critical role in bladder tumorigenesis along the high-grade,
invasive pathway. Interestingly, in humans, defects affecting
both p53 and Rb are rare in low-grade, superficial papillary
bladder tumors but occur in over half of the high-grade,
invasive bladder carcinomas.146–148 Although the SV40T data
from the transgenic mice are strongly supportive of the
human data on p53 and Rb, one needs to be cautious because
SV40T exerts wider oncogenic effects than simply inactivating
p53 and Rb.149,150 For this reason, specific inactivation of
both p53 and Rb genes in urothelium should provide more
insightful information regarding the role of these two genes
in triggering muscle-invasive bladder tumors. Recently, we
have developed a Cre-recombinase based system that allows
urothelium-specific ablation of genes flanked by the loxP
sequences.36 With this system, we have been able to inactivate
p53 or Rb or both in the urothelium, thus avoiding the
embryonic lethality and premature death associated with the
global knockout of these two genes. Experiments are
underway to determine whether p53 and/or Rb deficiency

is sufficient to trigger invasive bladder tumors. Overall, the
UPII promoter-based transgenic and knockout systems have
been instrumental in defining the in vivo roles of genetic
alterations in bladder tumor initiation and progression.
Given their resemblance to the human counterparts and their
highly predictable time course and biological behavior, the
transgenic models of bladder tumors will also be useful for
evaluating novel preventive and therapeutic strategies.151

SUMMARY AND PERSPECTIVES

Over the last two decades, the field of urothelial biology has
seen considerable advances in understanding how the
urothelial cells differentiate to perform their unique biolo-
gical functions. We now know that uroplakins are the
essential structural components of the urothelial apical
surface whose deficiency compromises the urothelial perme-
ability barrier and leads to global urinary tract anomalies.
The assembly of UPs and subsequent translocation of the
urothelial plaques from the cytoplasm to the apical surface
are a highly coordinated and regulated process. As one of the
few known urothelium-specific markers that are retained by
most of its malignancies, UPs can serve as excellent adjunct
biomarkers for differential diagnosis and early identification
of urothelial cancer cell spread to local tissues, lymph nodes,
and blood stream. UPs are major mediators in the adhesion,
host cell invasion, and upward urinary tract spread of type 1-
fimbriated E. coli. Finally, the uroplakin promoter-based
transgenic and knockout models have yielded new insights
into the molecular pathways of urothelial tumorigenesis and
progression and will provide a platform for evaluating novel
preventive and therapeutic approaches. Notwithstanding the
progress, many important questions remain. For instance,
how is uroplakin-trafficking between the cytoplasm and the
apical surface of the urothelial umbrella cells regulated in the
non-stretched vis-à-vis the stretched state of the urothelium?
What are the relative contributions of different Rab family
proteins in tethering the uroplakin-containing fusiform
vesicles to the urothelial apical surface, and precisely what
cellular machineries control the degradative pathway of
uroplakins? Are these membrane trafficking processes
involved in bacterial invasion into and exit from the
urothelial cells? Through what specific mechanisms do
urothelial plaques interact with a meshwork of underlying
cytoskeletons allowing dynamic membrane movement dur-
ing the normal micturition cycle as well as the pathophysio-
logical processes such as bacterial invasion? Exactly how are
the signals from FimH/UPIa interaction at the extracellular
surface propagated across the membrane to the cytoplasm? Is
it possible to resolve the uroplakin complex at atomic
resolution so that the structure/function relationship of these
membrane proteins can be eventually elucidated? Finally, will
gene expression and/or knockout in urothelium in a
temporally controlled manner yield more realistic models
of urothelial diseases including carcinomas over the current,
constitutive approaches? Answers to some of these questions
will undoubtedly further advance the field of urothelial
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biology and, more importantly, they should shed light on the
molecular mechanisms whereby urothelium-related diseases
arise and evolve.
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